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Motivation & Notation

Network Embeddings

Goal: Obtain a low dimensional representation of the network

Reason: Use machine learning techniques to answer network based
questions
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Motivation & Notation

Latent Position Models

Assume each vertex v ∈ V is associated with a random vector
Xv ∈ Rd that characterize the connectivity structure

Random Dot Product Graph (RDPG) (Sussman et al. 2012)

Suppose that F is a probability distribution on Rd such that for all

x , y ∈ supp(F ), xT y ∈ [0, 1]. Let {Xi}ni=1
i .i .d .∼ F and X = [X1, . . . ,Xn]T .

We say (A,X) ∼ RDPG (F , n) with latent positions X iff {Aij} are
conditionally independent with

P(Aij = 1|X) = XT
i Xj

In essence, Aij |X
ind .∼ Bern(XT

i Xj) and P ≡ E(A|X) = XXT

Task: Given {A(k)}mk=1 with latent positions X(k), how do we
estimate X(k)?
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Past Work

Omnibus Embedding

Omnibus Embedding (Levin et al. 2017)

The Omnibus matrix is given by

M =


A(1) 1

2 [A(1) + A(2)] . . . 1
2 [A(1) + A(m)]

1
2 [A(2) + A(1)] A(2) . . . 1

2 [A(2) + A(m)]
...

...
. . .

...
1
2 [A(m) + A(1)] 1

2 [A(m) + A(2)] . . . A(m)


The d-dimensional Omnibus embedding is Ẑ ≡ UMS

1/2
M where

M = UMSMUT
M + ŨMS̃MŨT

M

SM ∈ Rd×d is a diagonal matrix of the top d eigenvalues and
UM ∈ Rnm×d has columns that are the corresponding eigenvectors
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Past Work

Omnibus Embedding - Intuition

Suppose that A(k) have the same latent positions X(k) = X

Then we have

M = UMSMUT
M + ŨMS̃MŨT

M = Ẑ︸︷︷︸
nm×d

ẐT︸︷︷︸
d×nm

+Z̃Z̃T

P̃ = E(M|X) =

XXT . . . XXT

...
. . .

...

XXT . . . XXT

 =


X

...
X




︸ ︷︷ ︸
nm×d


X

...
X




T

︸ ︷︷ ︸
d×nm

Therefore, Ẑ serves as a natural estimator of the latent positions

L = [X(1)T X(2)T . . .X(m)T ]T

up to an orthogonal rotation.
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Past Work

Trivia Time! What’s the name of this building?
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Results

Simulation: (Root) Mean Squared Error

Motivating Question: What if the latent positions are different for
each network?
Suppose A

(1)
ij and A

(2)
ij have latent positions

√
p and c

√
p so that

P
(1)
ij = p and P

(2)
ij = c2p
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Results

Analysis Setup

What are some properties of the Omnibus embedding, Ẑ?

First, consider
P̃ = UP̃SP̃UT

P̃
+ ŨP̃S̃P̃ŨT

P̃

and define Z ≡ UP̃S
1/2

P̃
∈ Rnm×d

For some orthogonal matrix W consider(
Ẑ− LW

)
i

=
(
Z− LW

)
i

+
(
Ẑ− Z

)
i

Bias Term

Variance Term

Benjamin Draves (Boston Univeristy) Bias in Joint Spectral Embeddings



Results

Exploiting Kronecker Structure

In order to analyze the bias, we need a closed form of Z

First consider the following decomposition[
1 1+c2

2
1+c2

2
c2

]
≡
([

α
β

]) ([
α
β

])T
+
([

α̃

β̃

])([
α̃

β̃

])T
Then using the Kronecker Structure of P̃ = E(M|X)

P̃ =

[
P(1) 1

2

(
P(1) + P(2)

)
1
2

(
P(1) + P(2)

)
P(2)

]
=

[
1 1+c2

2
1+c2

2 c2

]
⊗ XXT

=

([
α
β

]
⊗ X

)([
α
β

]
⊗ X

)T

+

([
α̃

β̃

]
⊗ X

)([
α̃

β̃

]
⊗ X

)T

Therefore Z = UP̃S
1/2

P̃
=

[
α
β

]
⊗ X
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Results

Theorem: Bias in Joint Spectral Embeddings

Bias in Joint Spectral Embeddings

Suppose X = UΣVT and X̃ = UΣ. Then with the notation as above,
there exists a matrix W ∈ Od×d such that

(
Z− LW

)
i

=

{
(α− 1)X̃i 1 ≤ i ≤ n

(β − c)X̃i n + 1 ≤ i ≤ 2n
(1)

Moreover, for all i ∈ [2n] and γ < 1

P
(
‖
(
Ẑ− Z

)
i
‖2 ≥ n−γ

)
= O

(
log 2n

n1−γ

)
(2)
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Results

Central Limit Theorem Conjecture

Conjecture: scaled rows of
(
Ẑ− Z

)
i

are asymptotically normal

Central Limit Theorem Conjecture

With notation as above we have the following limit theorem

P
(√

n
(
Ẑ− Z

)
i
≤ z

)
D−→
∫
supp(F )

Φ (z ,Σg (c , xi ))dF (xi )

where Φ is a the Normal cumulative distribution function.

Have analytic expressions for Σg (c , xi )

Weighted sum of variances derived in Athreya et al. 2016

Weights in terms of α and β

Several other extensions & improvements of the results presented here
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Simulation Studies

Simulation Design

Suppose that A(1) ∼ ER(p) and A(2) ∼ ER(c2p)

Then the latent positions are Xi =
√
p and cXi = c

√
p

Simulation layout
1 Sample A(1),A(2) with n ∈ {100, 500} vertices from each model with

p = 1/2
2 Jointly embed A(1),A(2) to obtain estimates Ẑi

3 Compare estimates to theoretical quantile intervals

(α− 1)
√
p ± zα/2n

−1/2
√

Σ1(c ,
√
p)

(β − c)
√
p ± zα/2n

−1/2
√

Σ2(c ,
√
p)
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Simulation Studies

Results: n = 100
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Simulation Studies

Results: n = 100
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Simulation Studies

Results: n = 500
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Simulation Studies

Results: n = 500
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Conclusions & Future Work

Conclusion & Future Work

Discussed the graph embedding approach to network inference

Uncovered the bias when jointly embedding networks with different
connectivity structure

Discussed the asymptotic properties of the embedding

Extend this analysis to a more general set of latent positions

Work with m > 2 networks
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Conclusions & Future Work

Questions? Comments?
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Conclusions & Future Work
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