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Motivation & Notation

Network Embeddings

Goal: Represent vertices of a network in a low dimensional space

Reason: Use machine learning techniques to answer network based
questions
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Motivation & Notation

Analysis Framework

Consider m graphs over a common vertex set V of size n

Associate v ∈ V with a latent position Xv ∈ Rd

Inner Product Distribution

Let F be a probability distribution over Rd . We say F is a d-dimensional
inner product distribution if all x, y ∈ supp(F ) has the property
xTy ∈ [0, 1].

Assume latent positions X1,X2, . . . ,Xn
i .i .d .∼ F . Organize in the rows

of a matrix X = [X1X2 . . .Xn]T .

Technical Assumption

For y ∼ F assume ∆ = E[yyT ] is diagonal with mini∈[d ] ∆ii > 0
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Motivation & Notation

Multiplex Colinear Random Dot Product Graph

Multiplex Colinear Random Dot Product Graph (MCRDPG)

Let C(1), . . . ,C(m) ∈ Rd×d be a diagonal matrices with non-negative
entries so that XT

i C
(g)Xj ∈ [0, 1] for all i ∈ [n] and g ∈ [m].

The random adjacency matrices {A(g)}mg=1 are distributed according

to the MCRDPG with latent positions X iff {A(g)
ij } are conditionally

independent with

P(A
(g)
ij = 1|X) = XT

i C
(g)Xj

In essence, A
(g)
ij |X

ind .∼ Bern(XT
i C

(g)Xj)

Task: Given {A(g)}mg=1, how do we estimate {X
√
C(g)}mg=1?
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Estimators

Adjacency Spectral Embedding

Idea 1: Ignore joint structure and estimate X
√
C(g) individually

Adjacency Spectral Embedding (Sussman et al. 2012)

Let A(g) have eigendecomposition

A(g) = [UA(g) |ŨA(g) ][SA(g) ⊕ S̃A(g) ][UA(g) |ŨA(g) ]T

where UA(g) ∈ Rn×d and SA(g) ∈ Rd×d contains the top d eigenvalues of

A(g). Then the ASE of A(g) is defined by ASE(A(g), d) = UA(g)S
1/2

A(g) .

Estimate X
√
C(g) by X̂

(g)
ASE = ASE(A(g), d)

Idea 2: Assume i.i.d. (C(g) = C∗) and estimate a global X̂

Estimate X
√
C(g) by X̂Abar = ASE(Ā, d) where Ā = m−1

∑m
g=1 A

(g)
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Estimators

Omnibus Embedding

Idea 3: Incorporate the joint structure in the embedding

Omnibus Embedding (Levin et al. 2017)

The Omnibus matrix is given by

Ã =


A(1) 1

2 [A(1) + A(2)] . . . 1
2 [A(1) + A(m)]

1
2 [A(2) + A(1)] A(2) . . . 1

2 [A(2) + A(m)]
...

...
. . .

...
1
2 [A(m) + A(1)] 1

2 [A(m) + A(2)] . . . A(m)


Notice ASE(Ã, d) ∈ Rnm×d

Estimate X
√
C(g) by X̂

(g)
Omni = [ASE(Ã, d)]g where [·]g denotes the

g -th n row block.
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Motivation

Simulation: Mean Squared Error

Suppose A(1) ∼ ER(p) and A(2) ∼ ER(c2p)
Then the latent positions are

√
p for A(1) and c

√
p for A(2)
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Results

Bias in Joint Spectral Embeddings

Preliminary notation:
Let h = i + n(g − 1) for i ∈ [n] and g ∈ [m] and define (M)i = MT

i·
Let L = [

√
C(1)XT

√
C(2)XT . . .

√
C(m)XT ]T .

Theorem

Let ({A(g)}mg=1,X) ∼ MCRDPG(F , n, {C(g)}mg=1). Let L̂ = ASE(Ã, d) be

the Omnibus embedding of {A(g)}mg=1.

There exists diagonal matrices {S(g)}mg=1 that only depend on {C(g)}mg=1

and an orthogonal matrix W such that

(L̂W − L)h = (S(g) −
√
C(g))Xi + Rh (1)

Moreover, with high probability

max
h∈[nm]

‖Rh‖2 ≤ O

(
m3/2 log nm√

n

)
(2)
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Results

Simulation Design

Base model: Balanced two group SBM, B =

[
1/4 1/20

1/20 1/4

]

Network Weighting Block Probabilities Model

A(1) C(1) =

3/4 0

0 1/2

 B1 =

13/80 1/16

1/16 13/80

 Connected
SBM

A(2) C(2) =

1/2 0

0 3/4

 B2 =

3/20 0

0 3/20

 Disconnected
SBM

A(3) C(3) =

1 0

0 0

 B3 =

3/20 3/20

3/20 3/20

 Erdös-Réyni
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Results

Simulation Design (continued)

Simulation Design

1 Assign vertices to each group with probability π = .5
2 Sample adjacency matrices

A(1) ∼ SBM(B1, π)
A(2) ∼ SBM(B2, π)
A(3) ∼ ER(p = 0.15)

3 Embed Ã to obtain L̂ = [X̂
(1)T
Omni X̂

(2)T
Omni X̂

(3)T
Omni]

T

Compare analytic bias (S(g) −
√
C(g))Xi to observed bias (L̂W − L)h.

Compare residual bound O
(
m3/2 log nm√

n

)
to observed residuals R̂h.

Benjamin Draves (Boston Univeristy) Bias-Variance Tradeoffs in Joint Spectral Embeddings



Results

Simulation Results: Bias
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Results

Simulation Results: Bias
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Results

Simulation Results: Residuals
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Results

Simulation Results: Residuals
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Results

Variance in Joint Spectral Embeddings

Residual Decomposition

Decompose the residual term
√
nRi =

√
nR

(1)
i +

√
nR

(2)
i
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Results

Variance in Joint Spectral Embeddings

Residual Decomposition

Decompose the residual term
√
nRi =

√
nR

(1)
i +

√
nR

(2)
i
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Conclusion

Conclusion

Introduced the MCRDPG probability model

Highlighted an advantageous bias-variance tradeoff given by the
Omnibus Embedding

Established
1 Bias of the Omnibus Estimator under the MCRDPG
2 Uniform bound on the residual term at a O(m3/2 log nm/

√
n) rate

Highlighted second moment properties of the Omnibus Embedding
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Conclusion

Questions?
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Conclusion
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Conclusion
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