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Principle Component Analysis (PCA)

@ PCA looks to reduce the number of input variables X1, Xo, ..., Xk (k
large) to ko < k variables
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Principle Component Analysis (PCA)

@ PCA looks to reduce the number of input variables X1, Xo, ..., Xk (k
large) to ko < k variables

@ Reduce to fewer inputs while preserving as much variability in the
data as possible

PCA Example Data

PCA Example Data PCA Example Data

Centered Y-values

Centered X-values Peat

Genered X-valuss.
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Treelet Covariance Smoothers

Genetics Motivation

@ Individual's genetic material can be described by a panel of genotyped
SNPs

@ Using this genetic information, an estimate of the relationship matrix,
A, can be calculated

@ Genetically inferred relationship matrices are typically very noisy

o ldea: use PCA to set the data on top of a more “natural” basis
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Treelet Covariance Smoothing

@ Goal: preserve local structure of data
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Treelet Covariance Smoothers

Treelet Covariance Smoothing

@ Goal: preserve local structure of data

@ lteratively change basis via PCA to preserve the variability between
two most closely related individuals

@ Repeat this process until all individuals are processed

@ Once all individuals are processed, enforce sparsity to improve the
estimator
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Expanding TCS

@ Why do we require merging into one cluster?
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Expanding TCS

@ Why do we require merging into one cluster?

@ Idea: Stop merging variables to utilize familiar blocks
@ Smooth by projecting data onto sum variables

o Treelet Covariance Blocking (TCB)
@ Further enforce sparsity by thresholding estimates

o Treelet Covariance Blocked Smoothing (TCBS)
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@ At each level of the tree there are basis vectors {vl(e), cey Wy
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(f)}

@ At each level of the tree there are basis vectors {vl(e), cey Wy

@ We can then write our estimate of A, f by

£= A0 (W) S A0 (W)

HE) ij€Sy, i)
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(f)}

@ At each level of the tree there are basis vectors {vl(e), cey Wy

@ We can then write our estimate of A, f by

£= A0 (W) S A0 (W)

HE) ij€Sy, i)

o Here ’Y?J(Z) are the variance - covariance estimates of transformed
relationship variables
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Treelet Covariance Smoothers

(f)}

@ At each level of the tree there are basis vectors {vl(e), cey Wy

@ We can then write our estimate of A, f by

£= A0 (W) S A0 (W)

HE) ij€Sy, i)
o Here ﬁ}_(@) are the variance - covariance estimates of transformed

relationship variables

@ We can enforce sparsity by further thresholding these 'y?’j(e) values
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Simulation Results

RMSE - Method & Deg. of Relationship
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Conclusion

@ Treelet Covariance Smoothers is a class of methods which improve
the estimation of distant relationships
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Treelet Covariance Smoothers

Conclusion

@ Treelet Covariance Smoothers is a class of methods which improve
the estimation of distant relationships

o Estimating relationships is the centerpiece of successful estimation of
other genetic parameters such as heritability

@ Understanding of genetic basis of heritability can lead to better
treatment
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Thanks for listening

Questions? Comments?
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