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Treelet Covariance Smoothers

Principle Component Analysis (PCA)

PCA looks to reduce the number of input variables X1,X2, . . . ,Xk (k
large) to k0 < k variables

Reduce to fewer inputs while preserving as much variability in the
data as possible
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Treelet Covariance Smoothers

Genetics Motivation

Individual’s genetic material can be described by a panel of genotyped
SNPs

Using this genetic information, an estimate of the relationship matrix,
A, can be calculated

Genetically inferred relationship matrices are typically very noisy

Idea: use PCA to set the data on top of a more “natural” basis
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Treelet Covariance Smoothers

Treelet Covariance Smoothing

Goal: preserve local structure of data

Iteratively change basis via PCA to preserve the variability between
two most closely related individuals

Repeat this process until all individuals are processed

Once all individuals are processed, enforce sparsity to improve the
estimator
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TCS Properties
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Treelet Covariance Smoothers

Expanding TCS

Why do we require merging into one cluster?

Idea: Stop merging variables to utilize familiar blocks

Smooth by projecting data onto sum variables

Treelet Covariance Blocking (TCB)

Further enforce sparsity by thresholding estimates

Treelet Covariance Blocked Smoothing (TCBS)
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Treelet Covariance Smoothers

At each level of the tree there are basis vectors {v (`)1 , . . . , v
(`)
N }

We can then write our estimate of A, Σ̂, by

Σ̂ =
∑
i∈Ŝ`
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Here γ̂i ,j
(`) are the variance - covariance estimates of transformed

relationship variables

We can enforce sparsity by further thresholding these γ̂i ,j
(`) values
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i ,j∈Ŝ`,i 6=j

γ̂
(`)
i ,j v̂

(`)
i

(
v̂
(`)
j

)t

Here γ̂i ,j
(`) are the variance - covariance estimates of transformed

relationship variables

We can enforce sparsity by further thresholding these γ̂i ,j
(`) values

B. Draves (Lafayette College) Treelet Covariance Smoothers Moravian College, 2017 8 / 11



Treelet Covariance Smoothers

Treelet Covariance Smoothers

At each level of the tree there are basis vectors {v (`)1 , . . . , v
(`)
N }

We can then write our estimate of A, Σ̂, by

Σ̂ =
∑
i∈Ŝ`
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Simulation Results
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Treelet Covariance Smoothers

Conclusion

Treelet Covariance Smoothers is a class of methods which improve
the estimation of distant relationships

Estimating relationships is the centerpiece of successful estimation of
other genetic parameters such as heritability

Understanding of genetic basis of heritability can lead to better
treatment
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Thanks for listening

Questions? Comments?
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