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Motivation in Statistical Genetics

Molecular Biology Review

Each person’s genetic
composition coded on
chromosomes

Most humans have 46 in total,
all occurring in pairs

The 23rd pair determines sex

We can compare the genetic
data coded by the first 22 pairs
for all humans

Find patterns between this
genetic data and realized traits
& diseases
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Motivation in Statistical Genetics

Traditional Genetic Studies

We wish to estimate the penetrance function, P(Y |G)

Y is some phenotype of interest
G codes the underlying genotype

Kinda hard to do without G...

Linkage Analysis studies have had considerable success understanding
G indirectly by analyzing Y through numerous generations

Hard to do with human genetics

Next Generation Sequencing (NGS) technology allows us to sample
from G directly
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Motivation in Statistical Genetics

Single Nucleotide Polymorphisms (SNPs)

So how do we encode this genetic information?
Code the chromosome pairs
Exploit the complimentary fashion of DNA
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Motivation in Statistical Genetics

SNPs (cont.)

SNPs Recode Count Minor Alleles

(A,T) (A,T)

(G,C) (A,T)
...

...

(G,C) (A,T)

(G,C) (G,C)

=⇒

α α

β α
...

...

β α

β β

=⇒

2

1
...

1

0

Each row in this diagram represents a SNP

The pair, either (A,T ) or (G ,C ), is called a polymorphism or an allele

An allele is called a minor allele if appears less frequently in the
population
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Motivation in Statistical Genetics

Minor Allele Counts as Random Variables

For each locus, k, we code can code individual i ’s minor allele count
(MAC) by c

(i)
k ∈ {0, 1, 2}

For m loci, we can describe the full genotype by

Minor Allele Count (MAC)

c
(i)
∗ = {c(i)

1 , c
(i)
2 , . . . , c

(i)
m } ∈ {0, 1, 2}m

If we assume random recombination of alleles, c
(i)
k ∼ Binom(2, pk)

Where pk is the minor allele frequency

This is a pretty strong assumption, but using this framework allows
for simple model construction
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Motivation in Statistical Genetics

Scaled Minor Allele Counts

Under the assumption that alleles are independent, we can center our
count vector

Let z
(i)
k := (c

(i)
k − 2pk)/(2pk(1− pk))1/2 be the scaled minor allele

count at locus k

Then for each SNP, k , we define the scaled minor allele count by

Scaled Minor Allele Count (SMAC)

z∗k = (z
(1)
k , z

(2)
k , . . . , z

(n)
k )t

Where n is the number of individuals in the sample

Then for a sample of m genetic markers, we organize this data as
Z = (z∗1, z

∗
2, . . . , z

∗
m) ∈ Rn×m
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Motivation in Statistical Genetics

Did everyone get that?

Z =




z∗1 z∗2 . . . z∗m

z
(1)
∗ z

(1)
1 z

(1)
2 . . . z

(1)
m

z
(2)
∗ z

(2)
1 z

(2)
2 . . . z

(2)
m

...
...

...
. . .

...
z

(n)
∗ z

(n)
1 z

(n)
2 . . . z

(n)
m




Individual n

SNP 2
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Motivation in Statistical Genetics

Genetic Parameters of Interest

Additive Genetic Relatedness (A)

Denoted Aij for relatedness between individuals i and j
Additive covariance between genetic markers
I’ll refer to this as Relatedness

Narrow Sense Heritability (h2)

Incorporates a small contribution for the m genetic markers,
independently
Doesn’t try to understand the joint distribution of the alleles
Traditional studies implicitly use this joint distribution to infer broad
sense heritability
I’ll refer to this as Heritability
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Motivation in Statistical Genetics

Estimating Relatedness

We consider alleles Identical By Descent (IBD)

Relatedness is the expected proportion of alleles IBD between
individuals

Under this interpretation of A, at SNP k , Aij = Cov(z
(i)
k , z

(j)
k )

Using this information, we can estimate A by

Method of Moments Estimate of A

Â =
1

m

m∑

k=1

z∗k(z∗k)t =
ZZt

m

As m increases, we expect
ZZt

m
→ A
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Motivation in Statistical Genetics

Estimating Heritability

Phenotype Model (1)

y = Xβββ + Zu + εεε with Var(y) = ZZtσ2
u + Iσ2

ε

y vector of phenotypes, Xβββ fixed effects, u vector of random effects
of the causal SNPs with Var(u) = Iσ2

u, εεε ∼ N (0, Iσ2
ε ) residual errors

But remember, we want to understand the ratio of genetic variance to
total variance

Let u = (u1, u2, . . . , uJ)t ∈ RJ be the vector of effects corresponding
to the J casual SNPs

Let σ2
g = Jσ2

u be the variance explained by all the SNPs

We can then write the genetic effect of individual i as gi =
J∑

j=1

z
(i)
j uj

where Var(g) = Aσ2
g
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Motivation in Statistical Genetics

Estimating Heritability (cont.)

Phenotype Model (2)

y = Xβββ + g + εεε with V̂ar(y) = Aσ2
g + Iσ2

ε

We can partition the variability of phenotypic expression into genetic
(σ2

g ) and environmental (σ2
ε ) factors

From here we define narrow sense heritability as

Narrow Sense Heritability

h2 =
σ2
g

σ2
g + σ2

ε

We can estimate this value via restricted maximum likelihood
(REML) algorithms
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Motivation in Statistical Genetics

Possible Problems

Assume we have three random individuals, who happen to be named
Ben, Josh, and Trent

Trent and Ben, coming from small Midwest towns, are 7th degree
relatives

Josh, from the west coast, is unrelated to Trent and Ben

Ben : 0 2 1 · · · · · · · · · 2

Trent : 1 2 0 · · · · · · · · · 0

Josh : 1 2 1 · · · · · · · · · 1

Â(Ben, Trent) = 1
130 , Â(Ben, Josh) = 1

130

How do we differentiate between distantly and unrelated individuals?
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Treelets

Preliminaries: Principal Component Analysis (PCA)

Goal: Rotate underlying space so variability lies on few vectors

We can rotate the space via a Jacobian matrix corresponding to the
principal components

Also used as a dimensionality reduction tool
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Treelets

Preliminaries: Wavelet Thresholding

Soft and Hard Thresholding

sλ(Âij) =





Âij + λ if Âij < λ

0 if −λ ≤ Âij ≤ λ,
Âij − λ if Âij > λ

fλ(Âij) =

{
Âij if |Âij | ≥ λ
0 if |Âij | < λ
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Treelets

Treelet Algorithm: The Idea

Focus on estimating close
relatives well

Preserve local familiar
structures

Try to extend that structure to
distant relatives

1 12 5 6 13 4 14 11 2 3 8 9 15 7 10
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Treelets

Treelet Algorithm

1 Let z∗ be a random vector representing the SMAC at any SNP with
covariance Σ = A, which is the additive genetic relationship matrix,
corresponding to ` = 0

2 Let V0 be the basis corresponding to this vector

3 Compute the variance-covariance matrix Σ̂(0) with corresponding
similarity matrix M̂(0) defined by

M̂ij
(0)

=
Σ̂ij

(0)

√
Σ̂ii

(0)
Σ̂jj

(0)

4 Initialize the sum variable indices to S0 = {1, 2, . . . ,N}
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Treelets

Treelet Algorithm (cont.)

4 For ` = 1, 2, . . . , L for L ≤ N − 1
1 Find the two most closely related individuals according M̂(`−1). Let

(α`, β`) = arg max
i,j∈S`−1

M̂
(`−1)
ij

2 Rotate the genetic space to decorrelate zα`
and zβ`

3 Rotate Σ̂(`−1) and update M̂(`−1)

4 Assuming α` and β` represent the first and and second principal
component, respectively

5 Update the sum set S` = S`−1 \ {β`}
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Treelets

Treelet Algorithm Visualized

z1(0) z2(0) z3(0) z4(0) z5(0)

s(1),d(1)

s(2),d(2)

s(3),d(3)

s(4),d(4)

` = 0

` = 1

` = 2

` = 3

` = 4

filler
�
s(4),d(3),d(2),d(4),d(1)

�t

�
s(3),d(3),d(2), s(1),d(1)

�t

⇣
v

(0)
1 , s(2),d(2), s(1),d(1)

⌘t

⇣
v

(0)
1 ,v

(0)
2 ,v

(0)
3 , s(1),d(1)

⌘t

⇣
v

(0)
1 ,v

(0)
2 ,v

(0)
3 ,v

(0)
4 ,v

(0)
5

⌘t
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Treelets

Treelet Decomposition

At each level ` we have an orthonormal basis V` =
[
v

(`)
1 . . . v

(`)
N

]

Using this basis, write z∗(0) =
N∑

i=1

α
(`)
i v

(`)
i where α

(`)
i = 〈z∗(0), v

(`)
i 〉

represent the projections onto that basis vector at level `

This gives rise to the decomposition of the variance of z∗(0)

Treelet Decomposition

Σ = Var[z∗(0)] =
N∑

i=1

γ
(`)
i ,i v

(`)
i

(
v

(`)
i

)t
+

N∑

i 6=j

γ
(`)
i ,j v

(`)
i

(
v

(`)
j

)t
= V`Γ`

(
V`
)t

Where γ
(`)
i ,j = Cov[α

(`)
i , α

(`)
j ] and Γ` =

[
γ

(`)
i ,j

]
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Treelet Covariance Smoothers

Formalization of Problem

For large samples, we expect A to be quite sparse

We want to enforce this sparsity on our estimates of A

We can do this directly, but run into the Trent, Ben, and Josh
problem

Idea: Use a Treelet representation of A and enforce sparsity of the
projected covariances, ΓΓΓ`, via wavelet hard thresholding
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Treelet Covariance Smoothers

Treelet Covariance Smoothing (TCS)

Crosset et al. (2013) first employed this method and called it Treelet
Covariance Smoothing (TCS)

Gaugler et al. (2014) used this method to show that the majority of
risk of Autism resides in common variants

It also partially got Trent a job at Lafayette

TCS Estimator

Ã(λ) =
N∑

i=1

fλ[γ̂i ,i ]v̂i (v̂i )
t +

N∑

i 6=j

fλ[γ̂i ,j ]v̂i (v̂j)
t = V̂fλ

[
Γ̂
]

V̂t

Where fλ is a hard-thresholding function with optimal smoothing
parameter λ

TCS utilizes the top level of the tree (` = N − 1)
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Treelet Covariance Smoothers

Possible Improvements/Heuristic Strategies

We anticipate clusters of closely related individuals in our samples
Varying `, we attain a more representative basis set for the underlying
genetic space

z1(0) z2(0) z3(0) z4(0) z5(0)

s(1),d(1)

s(2),d(2)

s(3),d(3)

s(4),d(4)

` = 0

` = 1

` = 2

` = 3

` = 4

filler
�
s(4),d(3),d(2),d(4),d(1)

�t

�
s(3),d(3),d(2), s(1),d(1)

�t

⇣
v

(0)
1 , s(2),d(2), s(1),d(1)

⌘t

⇣
v

(0)
1 ,v

(0)
2 ,v

(0)
3 , s(1),d(1)

⌘t

⇣
v

(0)
1 ,v

(0)
2 ,v

(0)
3 ,v

(0)
4 ,v

(0)
5

⌘t

We can induce additional smoothing by projecting only onto the first
principal component at each level
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Treelet Covariance Smoothers

Treelet Covariance Blocking (TCB)

We employ this idea in our proposed method Treelet Covariance
Blocking (TCB)

To utilize the first principal component only and write

z̃∗(`) =
∑

i∈Sl

α
(`)
i v

(`)
i

Using this projection, we estimate Var (z̃∗(`)) by

TCB Estimator

Ã(`) =
∑

i∈Ŝ`

γ̂
(`)
i ,i v̂

(`)
i

(
v̂

(`)
i

)t
+
∑

i ,j∈Ŝ`
i 6=j

γ̂
(`)
i ,j v̂

(`)
i

(
v̂

(`)
j

)t
= V̂`Γ̂`

(
V̂`
)t

Where ` is the optimal level of the tree

We implicitly enforce sparsity by only projecting the data onto basis
vectors that are supported by familial blockings in the data
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Treelet Covariance Smoothers

Treelet Covariance Blocked Smoothing (TCBS)

To further eliminate erroneous inter-familial relatedness, it may be
advantageous to utilize a hard thresholding function

We call this method Treelet Covariance Blocked Smoothing (TCBS)

Using the same projection onto the first principal components we have

TCBS Estimator

Ã(θ) =
∑

i∈Ŝl

fλ[γ
(`)
i ,i ]v

(`)
i

(
v

(`)
i

)t
+
∑

i ,j∈Ŝl
i 6=j

fλ[γ
(`)
i ,j ]v

(`)
i

(
v

(`)
j

)t
= V̂`fλ

[
Γ̂`
] (

V̂`
)t

Where θ = (`, λ) is the optimal level, smoothing parameter
combination
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Treelet Covariance Smoothers

Optimal Parameter Selection

All of our methods rely on choosing optimal smoothing parameters

We considered clustering techniques, cross validation, and likelihood
based methods to search over the parameter space Θ
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Treelet Covariance Smoothers

Cross Validation

Partition chromosomes into two sets: A and B
Find a robust, no smoothing estimate, Â using the SNPs from A
Train our algorithms on Â to attain Ã(θ) for each θ ∈ Θ

Partition B into K groups

For each k = 1, 2, . . . ,K , attain Âk and compare to smoothing
estimates Ã(θ) via

Cost Function

H(θ) =
1

(N − 1)NK

K∑

k=1

N∑

i<j

wij(Âij ,k − Ãij(θ))2

wij = |Γ(`)
ij | corresponds to the Γ matrix at level ` determined by θ

The optimal parameter is given by θ̂ = arg min
θ∈Θ

H(θ)
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Treelet Covariance Smoothers

Pretty pictures for those who are lost or bored
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Treelet Covariance Smoothers

Pretty pictures for those who are lost or bored
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Simulation Studies

Simulation Data - HapMap3 Data

We utilize a pedigree structure
used in other simulation studies

Seven generation family - only
consider 20 individuals

Most closely related was degree
three ( 1

8 genetic information)

Most distantly related was
degree eleven ( 1

2048 genetic
information)

Still unrelated individuals in
this sample

Liebners
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Simulation Studies

Simulation Design - Relatedness

1 Create a sample of 500 individuals by iteratively sampling 10 person
blocks from the Liebner pedigree

2 Record the relatedness of individuals within the blocks

3 Set relatedness for individuals not in the same block to 0

A1 =




A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . A50




4 Use the genetic information for this pedigree to attain Ã1(θ)

5 Compare these estimates to the true A1

6 Repeat this process ten times (e.g. A1,A2, . . . ,A10)
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Simulation Studies

Relatedness Results
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Simulation Studies

Relatedness Results (cont.)
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Simulation Studies

Simulation Design - Heritability

1 Use Phenotype Model (2), y = µµµ+ g + εεε, to generate ten phenotype
vectors with heritability σ2

g

2 Do this for σ2
g ∈ {.1, .2, . . . , .9}

3 Do this for all ten population structures represented by
A1,A2, . . . ,A10

4 In aggregate, each population will have 10 phenotype vectors for each
σ2
g considered

5 Use Ã(θ) in the REML algorithm to estimate heritability, σ̂2
g , and

compare to the known σ2
g
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Simulation Studies

Heritability Results
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Simulation Studies

Is this really how academics fight?

Kumar et al. (2016) - January 5, 2016

Here, we show that GCTA applied to current SNP data cannot produce
reliable or stable estimates of heritability.

Yang et al. (2016) - July 25, 2016

We show below that those claims are false due to their misunderstanding
of the theory and practice of random-effect models underlying
genome-wide complex trait analysis.

Kumar et al. (2016) - July 25, 2016

We do not understand the basis for the claim that “the GREML fits all of
the SNPs jointly in a random-effect model so that each SNP effect is
fitted conditioning on the joint effects of all of the SNPs.” Although Yang
and colleagues insist on this fact, they do not provide any mathematical
justification for this conclusion.
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Simulation Studies

Simulation Take-Aways

Relatedness

Our newly proposed methods, like most shrinkage estimators, fail to
estimate close relatives accurately
Refine the estimate of distant relatedness
Offer comparable, if not better, estimates for relatedness above 5th
degree

Heritability

Uhhh...
Quite difficult to attain any reasonable interpretation of these results
Need a better REML algorithm to utilize this model
Doctoral thesis? Draves et al. (2021)
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Health Aging and Body Composition Study

Health ABC - Study Description

3,075 men and women from Memphis and Pittsburgh areas between
the ages of 70 and 79

45% of women and 33% of men self reported African-American race

We only consider the 1663 individuals who self reported White race
seeing they made up the majority of the sample

The study records and maintains SNP level information as well as
several phenotypes

Body Mass Index (BMI)
Abdominal Visceral Fat Density (AVFD)
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Health Aging and Body Composition Study

Relatedness Estimates
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Health Aging and Body Composition Study

Heritability of BMI and AVFD

BMI is 30-40% heritable [Zhang and Lupski (2015)]

AVFD has maximal heritability, including non-genetic factors, of 48%
[Rice et al. (1997)]

Method BMI AVFD

NS 44.5% 14.6%
TCS 99.9% 54.0%
TCB 22.8% 17.0%

TCBS 15.4% 18.0%

TCS over estimates the heritability for both traits

TCB and TCBS have more stable behavior and appropriately estimate
these parameters
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Conclusion

Conclusions

This thesis develops two new methods that better utilize genome-level
genetic data

These methods better represent the inherent familial blockings within
large samples to better estimate distant relatedness

Our methods offer comparable estimates of relatedness for degree 5
relatives and higher

We refine the estimate of relatedness for degree 7 and higher

These better estimates should lead to better estimates of heritability

Applying these methods to the Health ABC study, we show our
methods stabilize the estimate of heritability in this setting
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Conclusion

Future Work

Better parameter selection - hierarchical clustering methods

Account for SNP - SNP correlation via genetic distant & other
correlation metrics

Implement decompositions into software package

Implement alternative methodologies for estimating heritability (e.g.
regression techniques, mixture modeling)
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Conclusion

Thank You

Advisor: Trent Gaugler

Committee: Eric Ho & Joy Zhou

Jayne Trent

Josh Arfin

Math Lounge Rabble
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Conclusion

Questions?
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