
Exact MCMC with Firefly Monte Carlo: A Review

Benjamin Draves

October 26, 2019

1 Introduction & Motivation

Firefly Monte Carlo Markov Chain (MCMC) is a MCMC subsampling method that attempts to gain com-

putational speed in sampling from a posterior distribution of interest [1]. In most Bayesian computation

problems, repeated computation of the the likelihood function is central to each iteration of the sampling

algorithm. For example, at each iteration of the celebrated Metropolis - Hastings algorithm it is necessary

to calculate the acceptance probability of a newly proposed state

α(θ(t), θ∗) = min

{
1,

p(x|θ∗)p(θ∗)
p(x|θ(t))p(θ(t))

}
.

In certain cases (e.g. the exponential family), the likelihood computation p(x|θ) scales as the size of the

parameter space and the overall sampling complexity will only incur a O(d) slowdown. For a general

likelihood function however, computation of the likelihood will require scanning each data value. In this

case, the likelihood computation p(x|θ) scales with the size of the data and the overall complexity of the

algorithm will incur a linear time slow down O(n). For large datasets, this slowdown can make many popular

sampling techniques infeasible.

There are two popular ways to address this slowdown. The first, and most simple, is analyzing the

likelihood directly. For example, in the exponential family under the assumption of conditional independence

p(x|θ) ∝ exp

{
η(θ)′

N∑
n=1

T (xn)− nA(θ)

}
.

Therefore, by precomputing the sufficient statistics of
∑N
n=1 T (xn), the likelihood can be computed in O(d)

time where η(θ) ∈ Rd. The clear drawback of this method is that not all likelihoods will have such a simple

form. The second and more flexible option to to approximate the likelihood with subsets of data [1]. By

defining a subset S ⊂ x with |S|<< |x| these techniques instead compute

p̆(x|θ) ∝
∏

n:xn∈S
pn(xn|θ)

and use p̆(x|θ) as a proxy for p(x|θ). In this setting, focus is spent on constructing representative subsets S

in some appropriate sense. Regardless of how well this approximation is constructed however, by replacing

1

p(x|θ) with p̆(x|θ) will result in sampling from an approximate posterior π̆(θ|x) instead of the true posterior

π(θ|x).

In their paper, Dougal Macclaurin and Ryan P. Adams attempt to combine these two approaches while

drawing from the exact posterior distribution. By introducing a set of latent variables that turn the data

“on and off” they introduce this subsampling notion. In addition, they assume each contribution to the

likelihood pn(xn|θ) has a lower bound that is “collapsible” in the same sense of exponential family. In this

way, these pieces of the likelihood can be computed in a time independent of the size of data. Assuming these

lower bounds are available, this approach offers significant computational improvements while providing

successive independent draws from the true posterior distribution. In this report, we introduce Firefly

MCMC, investigate the implementation details, and discuss its limitations and advantages.

2 FireFly Monte Carlo

Firefly Monte Carlo is a method that looks to improve computational time of MCMC sampling techniques

by improving the evaluation of the likelihood function. For concreteness suppose have the following model

x1, x2, . . . , xN |θ
iid∼ p(x|θ)

θ ∼ p(θ)

where θ ∈ Θ ⊆ Rd for d < N . Under a Bayesian paradigm, we seek the posterior distribution p(θ|{xn}Nn=1)

to complete inferential tasks. Moreover, using the conditional independence assumption, we look to find

p(θ|{xn}Nn=1) ∝ p(θ)
N∏
n=1

pn(xn|θ). (1)

For notational convenience, define Ln(θ) = pn(xn|θ) to the be contribution of the n-th data point to the

full likelihood. Recall, as we assume that computing p(x|θ) =
∏N
n=1 Ln(θ) will be costly, we look to avoid

computing Ln(θ) whenever possible to improve efficiency.

FireFly MC assumes there exists lower bounds 0 < Bn(θ) ≤ Ln(θ) for n ∈ [N]. With these lower bounds,

the authors introduce latent variables {zn}Nn=1 on {0, 1} with distribution

p(zn|θ, xn) =

(
Ln(θ)−Bn(θ)

Ln(θ)

)zn (Bn(θ)

Ln(θ)

)1−zn
. (2)

More compactly, the distribution of these latent variables are zn|θ, xn ∼ Bern
(
Ln(θ)−Bn(θ)

Ln(θ)

)
. Augmenting

2

the likelihood with these latent variables, we see that

p(θ, {zn}Nn=1|{xn}Nn=1) ∝ p(θ)
N∏
n=1

p(xn|θ)p(zn|xn, θ)

= p(θ)

N∏
n=1

Ln(θ)

(
Ln(θ)−Bn(θ)

Ln(θ)

)zn (Bn(θ)

Ln(θ)

)1−zn

= p(θ)
∏

n:zn=0

Bn(θ)
∏

n:zn=1

(Ln(θ)−Bn(θ))

= p(θ)

N∏
n=1

Bn(θ)
∏

n:zn=1

Ln(θ)−Bn(θ)

Bn(θ)
.

To see that indeed the introduction of these latent variables does not perturb the full posterior distribution

notice

N∑
i=1

∑
zi∈{0,1}

p(θ)

N∏
n=1

p(xn|θ)p(zn|xn, θ) = p(θ)

N∏
n=1

p(xn|θ)
∑

zn∈{0,1}

p(zn|xn, θ)

= p(θ)

N∏
n=1

p(xn|θ)

This introduction of latent variables is said to turn the likelihood term LN (θ) “on and off”. The analogy

for the method is that the data are flashing like fireflies as they are included or excluded in this likelihood

calculation. For a skematic describing this methodology, consider Figure 1. The introduction of latent

variables {zn}Nn=1 inspires the a Gibbs type sampling scheme update θ|zn using an appropriate MCMC

algorithm and then update zn|θ. We provide this full sampling procedure and a number of ways to sampling

zn|θ in Section 3.

We now analyze the lower bounds Bn(θ) and highlight two features that will maximize their utility to

computational efficiency. First notice, as we look to avoid computation of Ln(θ), we hope that zn = 0 for

the majority of the data. Again, this it to avoid this linear slow down O(n) inherent in the calculation of the

full likelihood p(x|θ). Notice this corresponds with {Ln(θ) − Bn(θ)} being small for all n ∈ [N] and values

of θ. Indeed, given the data x, for some n ∈ [N]

E[zn] = E[E[zn|θ]] = E
[
Ln(θ)−Bn(θ)

Ln(θ)

]
=

∫
Ln(θ)−Bn(θ)

Ln(θ)
p(θ|x)dθ (3)

Therefore, to minimize the number of points evaluated in the likelihood, we seek lower bounds Bn(θ) that are

tight to Ln(θ) where the posterior places higher mass. However, at this point, it appears that the problem

has just been shifted to the efficient calculation of
∏N
n=1Bn(θ). This leads to the second desirable properties

of Bn(θ); we hope that the calculation of
∏N
n=1Bn(θ) can be completed in sub-linear time and ideally is

independent of N . Therefore, we can list the desirable properties of Bn(θ) as follows.

(a) 1−Bn(θ)/Ln(θ) is small for regions of high probability of the posterior p(θ|x)

(b)
∏N
n=1Bn(θ) can be computed in time independent of N

3

Figure 1: Figure from [1]. Expansion of the parameter space: by expanding into the latent space, we can

directly exploit the structure of Bn(θ) for faster computations.

There is a natural tradeoff inherent in the preceding features. Feature (a) requires that the Bn(θ) be

tight. Of course, we could choose Bn(θ) = Ln(θ) but this second feature would not be satisfied. On the

other hand, if we find bounds that can be computed in a time independent of N , they may not be tight

enough to effectively “turn off” enough datapoints in the likelihood to yield computational gains.

In their paper, Maclaurin and Adams admit “...useful lower bounds can be difficult to obtain for many

problems.” However, they do site a very tight bound available for Logistic Regression problems and are

hopeful that the growing research on variational lower bounds will yield others. Even if tight bounds exist,

however, certain bounds will need to be adjusted to the posterior distribution. Therefore, a full MCMC

method or variational method may need to be used before the use of Firefly Monte Carlo. This is a clear

limitation of the methodology. We consider two bounds in our simulation studies; the one presented in

[1] and a bound developed through direct expansion of the likelihood function. In the proceeding sections,

we give the Firefly Monte Carlo algorithm, discuss sampling techniques for zn, and consider the logistic

regression likelihood as a concrete example.

3 Implementation Considerations

Having given an introduction to the Firefly Monte Carlo method and an analysis of the lower bounds

Bn(θ), we now highlight some of the implementation details. For concreteness, we consider a Random-Walk

Metropolis-Hastings Algorithm example. However, we stress that Firefly MC is applicable in any MCMC

approach where repeated evaluation of the likelihood is necessary. This includes accept-reject methods with

different proposals, variational methods, Metropolis-adjusted Langevin algorithm (MALA) to name but a

few. For the moment, assume that we know how to update the latent variables {zn}Nn=1. Then the Firefly

Monte Carlo sampling scheme is given in algorithm 1.

4

Algorithm 1 Firefly MC: A Random-Walk Metropolis-Hastings Algorithm Example

Input: Initial θ0 vector, proposal variance σ2

Output: Samples for the exact posterior p(θ|{xn}Nn=1)

1: for i = t, . . . , Iters do

2: With (θ(t−1), x), update latent variables {zn}Nn=1

3: Make proposal θ′ = θ(i−1) + η where η ∼ N(0, σ2I)

4: Sample u ∼ U(0, 1)

5: if
JointPost(θ′,{zn}Nn=1)

JointPost(θ(t−1),{zn}Nn=1)
> u then

6: θ(t) = θ′

7: else

8: θ(t) = θ(t−1)

9: end if

10: end for

While this algorithm simply lays out the structure of the general Metropolis-Hastings algorithm, the

computational gains occur in Algorithm 2. JointPost is the method that calculates the carefully constructed

augmented posterior given in Section 2. Notice that under certain families of lower bounds, the first line of

this algorithm can be completed in a time independent of N . Moreover, we only require a loop over zn = 1,

which for good choices of Bn will be significantly less than N . Therefore, the calculation of the acceptance

probability in this algorithm can be much faster as we do not require a linear scan of the data.

Algorithm 2 JointPost: A method to calculate the posterior with augmented likelihood

Input: Parameter vector θ and latent variables {zn}Nn=1

Output: Evaluation of the Likelihood

1: Set P = p(θ)×
∏N
n=1Bn(θ) . Cache sufficient statistics if possible

2: for n : zn = 1 do

3: P = P × Ln(θ)−Bn(θ)
Bn(θ)

. Cache Ln(θ), and Bn(θ) for sampling zn

4: end for

All that remains is sampling the latent variables {zn}Nn=1. Recall that zn ∼ Bern
(
Ln(θ)−Bn(θ)

Ln(θ)

)
. An

initial approach to updating the zn would be to complete a true Gibbs step and sample from this Bernoulli.

Notice however, that under this scheme we would need to scan over all n latent variables as calculate Ln(θ).

This was precisely the problem we have been trying to avoid when calculating the full likelihood. Instead

the author’s suggest two methods; explicit and implicit sampling.

Explicit sampling, given in Algorithm 3, is a simple approach to this problem. In essence, at each stage,

the algorithm only updates a random α% of the latent variables. A clear drawback of this approach is that

it restricts the mixing speed by a factor of 1/α. The authors do note, however, as most the mixing happens

in the θ space as compared to the zn space, this method works quite well in practice.

5

Algorithm 3 Explicit Sampling: A method to update {zn}Nn=1

Input: α resample fraction, parameter vector θ, data x, and latent variables {zn}Nn=1

Output: Updated latent variables {zn}Nn=1

1: for j = 1, . . . , dN × αe do
2: Sample n ∼ Random(1, N)

3: Update zn ∼ Bern
(
Ln(θ)−Bn(θ)

Ln(θ)

)
4: end for

In the case that
∑N
n=1 E[zn] << N , randomly updating the latent variables will not be the most efficient

approach as several variables will remain unchanged. As an alternative, the authors suggest a more sophisti-

cated way of updating the latent variables, implicit sampling, that is stated in Algorithm 4. In this scheme,

the authors suggest a Metropolis step with fixed proposals

qd→b = Q(z′n = 1|zn = 0)

qb→d = Q(z′n = 0|zn = 1)

and accepting with respect to p(zn|xn, θ) Regarding qd→b and qb→d as hyperparameters, the notation b→ d

means “bright to dim” and d→ b means “dim to bright.”

Algorithm 4 Implicit Sampling: A method to update {zn}Nn=1

Input: Parameter vector θ, data x, and latent variables {zn}Nn=1

Output: Updated latent variables {ẑn}Nn=1

1: for n : zn = 1 do

2: Sample proposal z′n ∼ Bern(qb→d)

3: Sample u ∼ U(0, 1)

4: if u < min
{

1,
p(z′n|xn,θ)
p(zn|xn,θ)

Q(zn|z′n)
Q(z′n|zn)

}
then

5: Accept proposal ẑn = z′n

6: else

7: Reject proposal ẑn = zn

8: end if

9: end for

10: for n : zn = 0 do

11: Sample proposal z′n ∼ Bern(qd→b)

12: Sample u ∼ U(0, 1)

13: if u < min
{

1,
p(z′n|xn,θ)
p(zn|xn,θ)

Q(zn|z′n)
Q(z′n|zn)

}
then

14: Accept proposal ẑn = z′n

15: else

16: Reject proposal ẑn = zn

17: end if

18: end for

With the introduction of this proposal step, there are several computational gains the author’s highlight.

6

First, notice if we propose no transition, z′n = zn, we do not need to calculate p(zn|θ, xn). Moreover, when

proposing a move from zn = 1 to z′n = 0, it is necessary to calculate both

p(z′n = 0|θ, xn) =
Bn(θ)

Ln(θ)
and p(zn = 1|θ, xn) =

Ln(θ)−Bn(θ)

Ln(θ)

However, notice that both Bn(θ) and Ln(θ) were calculated and stored in JointPost for n : zn = 1. As this

is the case, we incur no additional computational cost from proposing a transition from zn = 1 to z′n = 0.

Therefore, as it is computationally advantageous for zn = 0, the authors suggest propose this transition at

each stage. That is, set qb→d = 1, leaving qd→b as the only hyperparmeter. Therefore, all that remains is to

consider transitions from bright to dark. Similarly as above, when proposing a move from zn = 0 to z′n = 1,

it is necessary to calculate both

p(z′n = 1|θ, xn) =
Ln(θ)−Bn(θ)

Ln(θ)
and p(zn = 0|θ, xn) =

Bn(θ)

Ln(θ)

In this case, we need to evaluate Ln(θ) and Bn(θ) for zn = 0. However, if we choose qd→b sufficiently small, we

can further restrict the number of evaluations of Ln(θ) required at each stage of this Metropolis Algorithm.

Lastly, notice due to the fact that we chosen a fixed proposal probability, we can vectorize the proposal of

z′n by using a geometric distribution. We update Algorithm 4 with these computational improvements in

Algorithm 5.

7

Algorithm 5 Fast Implicit Sampling: A method to update {zn}Nn=1

Input: Parameter vector θ, data x, and latent variables {zn}Nn=1

Output: Updated latent variables {ẑn}Nn=1

1: for n : zn = 1 do

2: Sample reject threshold u ∼ U(0, 1)

3: if u > qb→d then . Propose Bright to Bright

4: Reject move proposal ẑn = zn = 1

5: else . Propose Bright to Dark

6: Calculate acceptance probability with cached values α = min
{

1, Bn(θ)qd→b

Ln(θ)−Bn(θ)

}
7: Sample acceptance threshold v ∼ U(0, 1)

8: if v < α then

9: Accept proposal ẑn = z′n = 0

10: else

11: Reject proposal ẑn = zn = 1

12: end if

13: end if

14: end for

15: Draw first proposed move g ∼ Geom(qd→b) . Propose Dark to Bright

16: while g ≤ |{n : zn = 0}| do
17: Calculate acceptance probability β = min{1, Ln(θ)−Bn(θ)

qd→bLn(θ)
}

18: Sample acceptance threshold u ∼ U(0, 1)

19: if u < β then

20: Accept proposal ẑg = z′g = 1

21: else

22: Reject proposal ẑg = zg = 0

23: end if

24: Sample next proposed state g = g + Geom(qd→b) . Next proposed move from Dark to Bright

25: end while

To this point, we have introduced the backbone of Firefly MCMC as a way to improve MCMC samplers

by improved likelihood evaluation.

References

[1] D. Maclaurin and R. P. Adams. Firefly monte carlo: Exact mcmc with subsets of data, 2014.

8

