
Computational Techniques in Latent Network Models

Lily Chou, Ben Draves, Nathan Josephs, Kelly Kung

December 12, 2018

1 Introduction

Game of Thrones is a popular HBO TV series adapted from George R.R. Martin’s best-selling book
series A Song of Ice and Fire. The medieval fantasy epic describes the stories of powerful families - kings
and queens, knights and renegades, liars and honest men - playing a deadly game for control of the Seven
Kingdoms of Westeros and to sit atop the Iron Throne. Conspiracy and deception, power and exile, blood
and tears run through the plot, sewing together characters with various backgrounds including royals and
peasants, as well as ice zombies and dragons. As the plot develops with each book release, readers wonder
where the storyline leads. Within the Seven Kingdoms, enemies become friends and vice-versa, all the while
winter spreads as the battle of ice and far draws nearer. We want to keep track of the dynamics between
characters as the plots develops. Some may keep a leaf diagram between characters; here we propose an
alternative – let the data do the work.

After discovering a dataset on the exchanges between the characters from the third book, A Storm of
Swords, we start to wonder if, and what, information we can extract. In particular, how can we make
inferences on the clustering of the characters. To address this, we turn to research of Peter Hoff on latent
network models. In Section 2, we show how the relationships between characters from the book naturally
arise as a network. Before fitting a model, we explain the latent network model framework in Section 3.
We then present two methods for fitting our model in Section 4 and then compare the results of the two
methods in Section 5. Finally, in Section 6 we end with a discussion on the implications of our findings, as
well as possible future work. We provide our code in the Appendix.

2 Data

Due to its global fame, Game of Thrones has been studied in many different contexts, especially in
network analysis. Therefore, there are many readily available datasets. In our project, we use the dataset
from Beveridge and Shan 2016, which contains information about characters’ interactions in the third book
of the series. In this case, an interaction occurs if the characters’ names appear within fifteen words of one
another. This could mean that the characters interacted with each other, conversed with each other, or
were generally mentioned together by another means. There is also a column that contains the number of
times each pair interacts with one another. Using this dataset, we constructed a weighted network using
the number of interactions as weights. Here, the nodes represent the characters and the edges represent the
interactions. We use an adjacency matrix, A, to represent the network, where the ai,j element represents
the number of times the characters interacted with each other. Note that this means if ai.j = 0, there are
no recorded interactions between character i and j based on how an interaction is defined. Although the
original dataset is intended as a directed network, we treat it as an undirected network in order to simplify
our models.

After transforming the dataset, our network G contains NV (G) = 107 nodes and NE(G) = 352 edges

which means it is quite sparse since it only contains approximately 6.20% of
(
NV (G)

2

)
= 5, 671 possible edges.

Figure 1 shows the network described. In order to account for the sparsity of our network, we consider a
subnetwork which only contains pairs of characters with at least 100 interactions. We chose a cutoff of 100
interactions because we want to focus our analysis on only the main characters. Looking at the distribution
of the weighted degree, we see that 77.6% of the characters had fewer than 100 interactions. Therefore, it

1

Aemon

Aerys

Alliser

Arya

Balon

Belwas

Beric

Bran

Brienne

Bronn

Brynden

Catelyn

Cersei

Craster

Daario

Daenerys

Davos

Eddard

Eddison

Edmure

Gendry

Gilly

Gregor

Hodor

Hoster

Irri

Jaime

Janos

Joffrey

Jojen

Jon

Jon Arryn

Jorah

Kevan

Loras

Lothar

Luwin

Lysa

Mance

Meera

Melisandre

Meryn

Missandei

Myrcella

Oberyn

Podrick

Rattleshirt

Renly

Rhaegar

Rickard

Rickon

Robb
Robert

Robert Arryn

Roose

Samwell

Sandor

Sansa

Shae

Stannis

Tommen
Tyrion Tywin

Val

Varys

Viserys

Walder

Ygritte

Grenn

Anguy

Thoros

Barristan

Nan

Theon

Jeyne

Petyr

Roslin

Elia

Ilyn

Pycelle

Drogo

Bowen

Margaery

Dalla

Qhorin

Styr

Olenna

Marillion

Ellaria

Mace

Chataya

Arya

Bran
Brienne

Catelyn

Cersei

Daenerys

Eddard

Gregor

Hodor

Jaime

Joffrey

Jojen

Jon

Lysa

Mance Meera

Robb

Robert

Samwell

Sandor

Sansa

Stannis

Tyrion

Tywin

Figure 1

makes sense to use this cutoff to limit our analysis to only the main characters. By doing so, our new network
G′ contains NV (G′) = 24 nodes and NE(G′) = 102 edges. Here, we see that the network now contains 38.2%
of 276 possible edges, which is a more appropriate level of density for our analysis. Everything that follows
is done on this subnetwork G′. Figure 1 shows this subnetwork G′, and indeed, we recognize the main
characters remain in our network.

3 Models

3.1 Model Formulation

A modern and popular class of network models is the Latent Network Model. This model, first introduced
by Hoff, Raftery, and Handcock 2002, associates each vertex v ∈ V with a latent variable Zv ∈ V. Using
these variables, the probability of an edge Eij being in the network is given by pij = κ(Zi, Zj) where
κ : V × V → [0, 1]. Following this work, the authors extend these models to the mixed-model, regression
framework where nodal attribute vectors xV are used in modeling the probability of an edge presense
(Krivitsky et al. 2009). For simplicity we do not consider nodal attributes in this work and instead focus
our inference on the latent variables associated with each network. Formally, we model the presence of an
edge given our latent variables as

logit P(Yij = 1|Z) = ||Zi − Zj ||+ εij

where

Zi
ind∼

G∑
k=1

λkMVNd(µk, σ
2
kId)

Putting priors over µk and σ2
k, as well as introducing the latent variable K representing the group from

which Z is drawn, we have the following model formulation:

2

Yij |Zi, Zj
ind∼ Bern

[
logit−1

(
‖Zi − Zj‖

)]
Zi|Ki = ki

ind∼ MVN(µki , σ
2
kiId)

K
iid∼ Multinoulli

(
G,λ

)
λk

iid∼ 1

G

µk
iid∼ MVNd(0, Id)

σ2
k
iid∼ Invχ2

1

With these, we can write the complete likelihood which we will use in both our fitting procedures. We let
θ = (µ, σ2,K, λ) denote our nuisance parameters. Then, we have

L(Z, θ;Y) =
∏
i<j

P(Yij |Zi, Zj)P(Zi|Ki, µki , σ
2
ki)P(Zj |Kj , µkj , σ

2
j)

× P(Ki|λi)P(λi)P(µki)P(σ2
ki)P(Kj)P(µkj)P(σ2

kj)

=
∏
i<j

(
logit−1

(
‖Zi − Zj‖)

)Yij(
1− logit−1

(
‖Zi − Zj‖)

)1−Yij
× fMVNd(µki , σ

2
kiId)× λi ×

1

G
× fMVNd(0, Id)× fInvχ2

2

× fMVNd(µkj , σ
2
kjId)× λj ×

1

G
× fMVNd(0, Id)× fInvχ2

2

∝
∏
i<j

(
logit−1

(
‖Zi − Zj‖)

)Yij(
1− logit−1

(
‖Zi − Zj‖)

)1−Yij
× 1

(σ2
ki

)1/2
exp

{
− 1

2σ2
ki

(Zi − µki)T (Zi − µki)
} 1

(σ2
kj

)1/2
exp

{
− 1

2σ2
kj

(Zj − µkj)T (Zj − µkj)
}

× exp
{
− 1

2
µTkiµki

}
exp

{
− 1

2
µTkjµkj

}
× 1

(σ2
ki

)2
exp

{
− 1

σ2
ki

} 1

(σ2
kj

)2
exp

{
− 1

σ2
kj

}
× λi × λj

4 Computational Methods

4.1 EM

One method for finding the latent variables Zi for each node is the Expectation-Maximization (EM)
algorithm. Unfortunately, the likelihood given in Section 3.1 cannot easily be handled with EM. In particular,

finding EZi,Zj |Y,θ
[
l(Z, θ;Y)

]
is difficult. One solution is to sample and use Monte Carlo methods to estimate

the expectation in the E-step and then proceed with the M-step. This is the so-called Monte Carlo EM
(MCEM) method.

Instead, we simplify our model to make EM more analytically tractable. In Section 4.2, we fit the full
model using MCMC. Here, we fit two simplified models: an unweighted model where Y indicates the presence
of an edge and a weighted model where now Y represents the number of interactions between characters.

4.1.1 Unweighted Model

We first fit an unweighted model on the presence of an edge in the network, which is defined by:

Yij |pij
ind∼ Bern(pij)

pij
iid∼ Beta(α, β)

3

where we define pij ≡ 2 − 2 ∗ logit−1(dij) where dij are latent distances defined in Section 3.1 and are
calculated by dij = logit(1− pij

2). We define pij in this manner to ensure that an infinite distance results in
zero probability of interaction and a distance of zero results in a probability of one. Then the likelihoods are

L(p, α, β;Y) =
∏
i<j

p
Yij
ij

(
1− pij

)1−Yij Γ(α+ β)

Γ(α)Γ(β)
pα−1ij

(
1− pij

)β−1
l(p, α, β;Y) =

∑
i<j

Yij log
(pij

1− pij

)
+ log(1− pij)

+ log Γ(α+ β)− log Γ(α)− log Γ(β)

+ (α− 1) log pij + (β − 1) log(1− pij)

For the E-step, we observe that the beta distribution is conjugate to the binomial and since pij only
depends on the data through Yij , we have the following likelihood. Note we just suppress our parameters
θ = {α, β}.

pij |Yij , θ ∝ Bern(pij)× Beta(α, β)

= Beta
(
α+ Yij , β + 1− Yij

)
Therefore, we have

πij ≡ Epij |Yij ,θ
[

log pij
]

= Ψ
(
α+ Yij

)
−Ψ

(
α+ β + 1

)
ηij ≡ Epij |Yij ,θ

[
log(1− pij)

]
= Ψ

(
β + 1− Yij

)
−Ψ

(
α+ β + 1

)
where Ψ is the digamma function. Thus

Q
(
θ; θ(t)

)
≡ Ep|Y,θ(t)

[
l(p;Y, θ)

]
=
∑
i<j

(Yij + α− 1)Epij |Yij ,θ(t) [log pij] + (β − Yij)Epij |Yij ,θ(t)
[

log(1− pij)
]

+ log Γ(α+ β)− log Γ(α)− log Γ(β) (E)

For the M-step, we simply take the partial derivatives of Q
(
θ; θ(t)

)
with respect to α and β. Note that

we will need an approximate solution in both cases since the digamma function prevents us from finding an
analytic solution. For this, we use the Newton-Raphson Method.

∂Q
(
θ; θ(t)

)
∂α(t)

=
∑
i<j

Epij |Yij ,θ(t)
[

log pij
]

+ Ψ
(
α(t+1) + β(t)

)
−Ψ(α(t+1)) = 0

=⇒ Ψ
(
α(t+1) + β(t)

)
−Ψ(α(t+1)) = −

∑
i<n Epij |Yij ,θ(t)

[
log pij

](
n
2

) (MU1)

∂Q
(
θ; θ(t)

)
∂β(t)

=
∑
i<j

Epij |Yij ,θ(t)
[

log(1− pij)
]

+ Ψ
(
α(t+1) + β(t+1)

)
−Ψ(β(t+1)) = 0

=⇒ Ψ
(
α(t+1) + β(t+1)

)
−Ψ(β(t+1)) = −

∑
i<n Epij |Yij ,θ(t)

[
log(1− pij)

](
n
2

) (MU2)

4

For the Newton-Raphson Method, we first define

g(α) = Ψ
(
α+ β(t)

)
−Ψ(α) +

∑
i<j

Epij |Yij ,θ(t)
[

log pij
](

n
2

)
=⇒ g′(α) = Ψ′

(
α+ β(t)

)
−Ψ′(α)

g(β) = Ψ
(
α(t+1) + β

)
−Ψ(β) +

∑
i<j

Epij |Yij ,θ(t)
[

log(1− pij)
](

n
2

)
=⇒ g′(β) = Ψ′

(
α(t+1) + β

)
−Ψ′(β)

Using these equations, we can find the updates of α and β:

α(t+1) = α(t) −
Ψ
(
α(t) + β(t)

)
−Ψ(α(t)) +

∑
i<j

E
pij |Yij,θ(t)

[
log pij

]
(n2)

Ψ′
(
α(t) + β(t)

)
−Ψ′(α(t))

(αU)

β(t+1) = β(t) −
Ψ
(
α(t+1) + β(t)

)
−Ψ(β(t)) +

∑
i<j

E
pij |Yij,θ(t)

[
log(1−pij)

]
(n2)

Ψ′
(
α(t+1) + β(t)

)
−Ψ′(β(t))

(βU)

Algorithm 1 shows the algorithm for the Unweighted Model.

Algorithm 1: EM for simplified latent network unweighted model

1 LNM EM (G, tol);
Input : Graph G

Tolerance tol
Output: Nuisance Parameters α∗, β∗

Latent Probability Estimates p̂
Latent Distance Estimates d̂

2 Initialize Q(0) repeat
3 E: calculate π(t), η(t);

4 M: update α(t+1) using (αU);

5 update β(t+1) using (βU);

6 calculate Q(θ, θ(t+1))

7 until |Q(θ(t+1),θ(t))−Q(θ(t),θ(t))
Q(θ(t),θ(t))

| < tol;

8 return α∗, β∗, p̂ = eπ
∗
, d̂ = logit−1(1− eπ

∗

2); where α∗, β∗, π∗ are converged values

4.1.2 Weighted Model

From the unweighted model, we were able to find convergent values for the latent distances for pairs of
nodes in the network. However, because the unweighted model only depends on the existence of an edge
between the nodes, there are only two possible values for these distances. Since we cannot infer anything
from these, we turn to the weighted model for the latent distances where the weights correspond to the
number of interactions between the characters.

In this weighted model, we fit the following model:

Yij |λij
ind∼ Pois(λij)

λij
iid∼ Gamma(α, β)

5

where now, λij = 1
dij

and dij is defined as above and are calculated by dij = 1
λij

. Again, we define λij
in this manner in order to have smaller distances result in higher mean number of interactions and greater
distances result in lower mean number of interactions. Thus the likelihood is:

L(λ, α, β;Y) =
∏
i<j

λ
Yij
ij e

−λij

Yij !

βα

Γ(α)
λα−1ij e−βλij

l(λ, α, β;Y) =
∑
i<j

log λij
(
Yij + α− 1)− λij(1 + β)− log(Yij !) + α log(β)− log Γ(α)

Since λij only depend on Yij from the data and since the Poisson and Gamma are conjugate, we know that

λij |Yij , θ ∝ Pois(λij)×Gamma(α, β)

= Gamma(α+ Yij , β + 1)

Note we suppress our parameters θ = {α, β}. From here, we define the following quantities:

πij ≡ Eλij |Yij ,θ
[
λij
]

=
α+ Yij
1 + β

ηij ≡ Eλij |Yij ,θ
[

log λij
]

= log(1 + β) + Ψ(α+ Yij)

and we have

Q(θ; θ(t)) ≡ Eλ|Y,θ(t)
[
l(λ;Y, θ)

]
=
∑
i<j

(Yij + α− 1)Eλij |Yij ,θ(t)
[

log λij
]

− (1 + β)Eλij |Yij ,θ(t)
[
λij
]
− log(Yij !) + α log(β)− log Γ(α)

For the M-step, we take partial derivatives of Q(θ; θ(t)) with respect to our parameters, and here, we see
that we can update β directly, but again, we have to use Newton Raphson for the α.

∂Q(θ; θ(t))

∂β(t)
= −

∑
i<j

Eλij |Yij ,θ(t)
[
λij
]

+
α(t+1)

β(t+1)
= 0

=⇒ β(t+1) =
α(t+1)∑

i<j Eλij |Yij,θ(t)
[
λij

]
(n2)

(βW)

∂Q(θ; θ(t))

∂α(t)
=
∑
i<j

Eλij |Yij ,θ(t)
[

log λij
]

+ log(β(t+1))−Ψ(α(t+1)) = 0

=⇒ Ψ(α(t+1)) =

∑
i<j Eλij |Yij ,θ(t)

[
log λij

]
+
(
n
2

)
log(β)(

n
2

) (MW1)

For the Newton Raphson step, we define

g(α) =
∑
i<j

Eλij |Yij ,θ(t)
[

log λij
]

+

(
n

2

)
log β(t) −

(
n

2

)
Ψ(α)

=⇒ g′(α) = −
(
n

2

)
Ψ′(α)

6

Thus we have

α(t+1) = α(t) −
∑
i<j Eλij |Yij ,θ(t)

[
log λij

]
+
(
n
2

)
log β(t) −

(
n
2

)
Ψ(α)

−
(
n
2

)
Ψ′(α)

= α(t) −
Ψ(α(t))−

∑
i<j

E
λij |Yij,θ(t)

[
log λij

]
(n2)

− log β(t)

Ψ′(α(t))
(αW)

Algorithm 2 shows the algorithm for the Weighted Model.

Algorithm 2: EM for simplified latent network weighted model

1 LNM EM (G, tol);
Input : Graph G

Tolerance tol
Output: Nuisance Parameters α∗, β∗

Latent Mean Estimates λ̂
Latent Distance Estimates d̂

2 Initialize Q(0) repeat
3 E: calculate π(t), η(t);

4 M: update β(t+1) using (βW);

5 update α(t+1) using (αW);

6 calculate Q(θ, θ(t+1))

7 until |Q(θ(t+1),θ(t))−Q(θ(t),θ(t))
Q(θ(t),θ(t))

| < tol;

8 return α∗, β∗, λ̂ = π∗, d̂ = 1
π∗ ; where α∗, β∗, π∗ are converged values

4.2 MCMC

4.2.1 Full Conditionals

Next, we turn to find the full conditional of each parameter in this likelihood function. At each iteration
t of the Gibbs sampler, we condition on the current parameter vector θ(t) and sample each parameter in
stepwise fashion. We develop the full conditionals below.

First, note that all nodes i from group K = k have latent variables Zi
iid∼ N(µk, σ

2
k). Hence the group

parameters µk and σ2
k can be sampled by considering only the nodes i from group k.

fµk|θ(t),Y (µk|θ(t), Y) ∝
∏
ki=k

exp

{
− 1

2σ2
ki

(Zi − µki)T (Zi − µki)

}
exp

{
−1

2
µTkiµki

}

∝ exp

{
Nv∑
i=1

I{ki = k}
[
− 1

2σ2
ki

(ZTi Zi − 2ZTi µki + µTkiµki)−
1

2
µTkiµki

]}

∝ exp

{
Nv∑
i=1

I{ki = k}
[
− ZTi Zi

2σtki
+
ZTi µki
σ2
ki

−

(
1

2σ2
ki

+
1

σ2
ki

)
µTkiµki

]}

∝ exp

Nv∑
i=1

I{ki = k}
[
−

(σ2
ki

+ 1)

2σtki

(
µki −

Zi
(σ2
ki

+ 1)

)T (
µki −

Zi
(σ2
ki

+ 1)

)]

7

Thus for all k ∈ {1, . . . , G}, we arrive at the following distribution for µk|θ(t), Y :

µk|θ(t), Y ∼ fMVNd

(
Nv∑
i=1

I{ki = k} Z
(t)
i

(σ2
ki

)(t) + 1
,

Nv∑
i=1

I{ki = k}
(σ2
ki

)(t)

(σ2
ki

)(t) + 1
Id

)

Now, we turn to finding the full conditional for the latent variance parameters σ2
ki

.

fσ2
ki
|θ,Y (σ2

ki |θ, Y) ∝
∏
Ki=k

σ2
Ki

− 1
2 exp

{
1

2σki
(Zi − µki)T (Zi − µki)

}
(σ2
ki)
− c2−1 exp

{
− 1

2σ2
ki

}

∝
∏
Ki=k

(σ2
ki)

(− c2−
1
2)−1 exp

{
− 1

2σ2
ki

(
(Zi − µki)T (Zi − µki) + 1

)}

∝ (σ2
ki)

((−c−1
2 ng−ng+1)−1) exp

{
− 1

2σ2
ki

∑
Ki=k

(
(Zi − µki)T (Zi − µki) + 1

)}

Let ng =
∑

I{ki=K} and SSg + ng =
∑
Ki=k

(
(Zi − µki)T (Zi − µki) + 1

)
. Then by using the posterior

distributions

νpost = (c+ 1)ng + 2(ng − 1)

τ2post =
SSg + ng

(c+ 1)ng + 2(ng − 1)

we arrive at the following distribution for σ2
k|θ(t), Y :

σ2
k|θ(t), Y ∼ InvΓ(

c

2
,

1

2
)
D
= τ2 ν Invχ2

c

Next, we find the conditional probabilities for group assignment:

P(Ki = k|θ, Y) ∝ λkfMVNd(µk,σ2
k)

(Zi)

Since K is Multinoulli, we arrive at the following probability by recognizing they must normalize to unity:

P(Ki = k|θ, Y) =
λkfMVNd(µk,σ2

k)
(Zi)∑G

g=1 λgfMVNd(µg,σ2
g)

(Zi)

=
fMVNd(µk,σ2

k)
(Zi)∑G

g=1 fMVNd(µg,σ2
g)

(Zi)
(λ(t))

Finally, we look at the conditional for the latent variable Zi:

fZi|θ,Y (Zi|θ, Y) ∝
∏
j 6=i

(
logit−1

(
‖Zi−Zj‖)

)Yij(
1−logit−1

(
‖Zi−Zj‖)

)1−Yij
exp

{
− 1

2σ2
ki

(Zi−µki)T (Zi−µki)
}

Since this is not a distribution we know how to sample from, we use a Metropolis-Hastings step. Here, we
choose a symmetric proposal, which simplifies the subsequent rejection ratio:

q(Z∗|θ(t), Y) ∼MVNd(0, Id)

R(Z∗, Z(t)) =
fZ|θ,Y (Z∗|θ(t), Y)q(Z(t)|θ(t), Y)

fZ|θ,Y (Z(t)|θ(t), Y)q(Z∗|θ(t), Y)

=
fZ|θ,Y (Z∗|θ(t), Y)

fZ|θ,Y (Z(t)|θ(t), Y)

8

Algorithm 3: Gibbs sampler for latent network model

1 LNM MCMC (G,Nk, d, ns);
Input : Graph G

Number of groups Nk
Dimension of Latent Variable d
Number of samples ns

Output: Posterior p(Z|Y, θ)
2 Initialize parameters µ(0), σ2(0), λ(0),K(0), Z(0);
3 for t = 2, . . . , ns do
4 for k = 1, . . . , Nk do

5 sample µk|θ(t), Y ∼MVNd

(∑Nv
i=1 I{ki = k} Z

(t−1)
i

(σ2
ki

)(t−1)+1
,
∑Nv
i=1 I{ki = k} (σ2

ki
)(t−1)

(σ2
ki

)(t−1)+1
Id

)
;

6 end
7 for k = 1, . . . , Nk do

8 sample σ2
k|θ(t), Y ∼

(
1 +

∑Nv
i=1 I{ki = k}(Z(t−1)

i − µ(t)
k)T (Z

(t−1)
i − µ(t)

k)
)

Invχ2

1+d
∑NV
i=1 I{ki=k}

;

9 end
10 for i = 1, . . . , Nv do
11 sample Ki ∼ Multinoulli(G,λ(t));
12 end
13 for i = 1, . . . , Nv do
14 sample Z∗i ∼MVNd(0, Id);

15 R(Z∗i , Z
(t)
i) = min

(
1,

fZ|θ,Y (Z∗i |θ
(t),Y,Z[−1])

fZ|θ,Y (Z
(t)
i |θ(t),Z[−1])

)
;

16 sample U ∼ U(0, 1);

17 if U ≤ R(Z∗i , Z
(t)
i) then

18 Z
(t+1)
i = Z∗i ;

19 else

20 Z
∗(t+1)
i = Z

(t)
i

21 end

22 end

23 end

24 end

9

5 Results

5.1 EM

We see that using the EM algorithm for the unweighted model is a good initial attempt in modeling the
interactions between characters. From the algorithm, we obtained estimates of probabilities of edges and
latent distances between characters, and using these values, we were able to identify some closely related
characters. Figure 2 shows heat maps that depicts the modeled relationships for pairs of characters.

Arya

Bran

Brienne

Catelyn

Cersei

Daenerys

Eddard

Gregor

Hodor

Jaime

Joffrey

Jojen

Jon

Lysa

Mance

Meera

Robb

Robert

Samwell

Sandor

Sansa

Stannis

Tyrion

Tywin

A
ry

a

B
ra

n

B
rie

nn
e

C
at

el
yn

C
er

se
i

D
ae

ne
ry

s

E
dd

ar
d

G
re

go
r

H
od

or

Ja
im

e

Jo
ffr

ey

Jo
je

n

Jo
n

Ly
sa

M
an

ce

M
ee

ra

R
ob

b

R
ob

er
t

S
am

w
el

l

S
an

do
r

S
an

sa

S
ta

nn
is

Ty
rio

n

Ty
w

in

Character Names

C
ha

ra
ct

er
 N

am
es

0

1

2

Distance

Arya

Bran

Brienne

Catelyn

Cersei

Daenerys

Eddard

Gregor

Hodor

Jaime

Joffrey

Jojen

Jon

Lysa

Mance

Meera

Robb

Robert

Samwell

Sandor

Sansa

Stannis

Tyrion

Tywin

A
ry

a

B
ra

n

B
rie

nn
e

C
at

el
yn

C
er

se
i

D
ae

ne
ry

s

E
dd

ar
d

G
re

go
r

H
od

or

Ja
im

e

Jo
ffr

ey

Jo
je

n

Jo
n

Ly
sa

M
an

ce

M
ee

ra

R
ob

b

R
ob

er
t

S
am

w
el

l

S
an

do
r

S
an

sa

S
ta

nn
is

Ty
rio

n

Ty
w

in

Character Names

C
ha

ra
ct

er
 N

am
es

0.0

0.1

0.2

0.3

0.4

0.5

Probabilities

Figure 2

The first heat map is constructed using the latent distances and the darker the color, the closer the
characters are. The second heat map is constructed using the probabilities of edges between characters, and
again, the darker the color, the higher the probability of an edge between the characters. From these heat
maps, we do see that some close relationships, like Bran and Hodor, are picked up in both cases. However,
it is important to note that in this unweighted model, there is a one-to-one relationship between the latent
distances and the presence of an edge and so the EM algorithm only provides estimates of probabilities and
distances for when there is an edge and when there isn’t an edge between the characters. Thus, we see that
these results can be improved.

To this end, we looked to improve this model with the inclusion of the edge weights into our modeling
procedure. Following a quite similar approach to that of the unweighted EM algorithm, we use conjugate
family relations and Network-Raphson to fit a model that assumes the edge weights follow a Poisson dis-
tribution with a parameter we interpret as a function of the distance in the latent space. The results for
this analysis follow. The heatmap in the leftmost panel of Figure 3 is that of the distances between nodes
in the network. Lighter squares suggest the vertices are further away while the darker squares represent the
vertices are closer. While it appears that this model again only fits a binary relation to the set of distances,
we actually see that for those vertices that are “close” that this is not the case. Upon investigation of these
values, we see that for vertices that do not share an edge, the distance was fit to be near 7. In essence, this
value represents a “maximal” distance between vertices. However, for vertices that are not this maximal
distance apart, we see that the model is fitting different distances among the vertices. This is evident by
the kernel density estimate in the rightmost panel of this figure. Here we see that for distances that are not
maximal, the distances between vetices fall in [0, .25] and perhaps come from a smooth bimodal distribution.

In addition to these distances, we provide a similar heatmap in Figure 4 that plots the estimates mean of
the Poisson random variable associated with the edge connecting the characters. Darker squares suggest that
the number of interactions between the characters is higher and lighter squares represent these characters
have less relation. This plot makes clear that this weighted-EM algorithm does appear to detect the number
of edges in the network.

As it appears that this model varies more smoothly over the network and accurately reflects the features

10

Arya

Bran

Brienne

Catelyn

Cersei

Daenerys

Eddard

Gregor

Hodor

Jaime

Joffrey

Jojen

Jon

Lysa

Mance

Meera

Robb

Robert

Samwell

Sandor

Sansa

Stannis

Tyrion

Tywin

A
ry

a

B
ra

n

B
rie

nn
e

C
at

el
yn

C
er

se
i

D
ae

ne
ry

s

E
dd

ar
d

G
re

go
r

H
od

or

Ja
im

e

Jo
ffr

ey

Jo
je

n

Jo
n

Ly
sa

M
an

ce

M
ee

ra

R
ob

b

R
ob

er
t

S
am

w
el

l

S
an

do
r

S
an

sa

S
ta

nn
is

Ty
rio

n

Ty
w

in

Character Names

C
ha

ra
ct

er
 N

am
es

0

2

4

6

Distance

0

1

2

3

4

5

0.00 0.05 0.10 0.15 0.20 0.25

Latent Distance

D
en

si
ty

Non−Zero Distance Distribution

Figure 3

Arya

Bran

Brienne

Catelyn

Cersei

Daenerys

Eddard

Gregor

Hodor

Jaime

Joffrey

Jojen

Jon

Lysa

Mance

Meera

Robb

Robert

Samwell

Sandor

Sansa

Stannis

Tyrion

Tywin

A
ry

a

B
ra

n

B
rie

nn
e

C
at

el
yn

C
er

se
i

D
ae

ne
ry

s

E
dd

ar
d

G
re

go
r

H
od

or

Ja
im

e

Jo
ffr

ey

Jo
je

n

Jo
n

Ly
sa

M
an

ce

M
ee

ra

R
ob

b

R
ob

er
t

S
am

w
el

l

S
an

do
r

S
an

sa

S
ta

nn
is

Ty
rio

n

Ty
w

in

Character Names

C
ha

ra
ct

er
 N

am
es

0

25

50

75

Mean Arya

Bran

Brienne

Catelyn

Cersei

Daenerys

Eddard

Gregor

Hodor

Jaime

Joffrey

Jojen

Jon

Lysa

Mance

Meera

Robb

Robert

Samwell

Sandor

Sansa

Stannis

Tyrion

Tywin

Figure 4

of the network, we use these estimates for inference tasks. Regarding the estimates provided by the weighted
EM algorithm, Λ̂ = [λ̂ij], as a smoothed, weighted adjacency matrix, we complete spectral clustering as
suggested by Ng, Jordan, and Weiss 2001. The results of this cluster analysis can be found in the rightmost
panel of Figure 4.

Based on our knowledge of the characters, the weighted EM model does a good job clustering. The green
and red clusters both represent groups that are geographically together. Bran (Stark) and Jon (Snow), both
have connections to characters in other clusters, but they are correctly assigned their respective groups based
on their location in A Storm of Swords. The light blue cluster is interesting because there is a complicated
relationship between these characters: Catelyn is Jaime’s captor, Brienne is Catelyn’s protector, but Jaime
and Brienne are love interests. Finally, the dark blue cluster represents all the characters at King’s Landing.
These could reasonably be broken into sub-clusters, but none of the characters belong in the first three
clusters.

11

5.2 MCMC

We applied our MCMC algorithm to the model given in Section 4.2 using ns = 50000. Furthermore,
we burned the first 20000 samples and thinned by only taking every tenth sample in the chain. This is
consistent with how Hoff used MCMC on Sampson’s monk dataset. Additionally, we used d = 2 so that
our latent variables Zi ∈ R2, and Nk = 3, indicating three underlying groups. Assessing the convergence
was nontrivial. We determined that our chain was probably not long enough as the group assignments
did not meaningfully converge for all characters. We note that our sampling mechanism in the MH step
deviates from Hoff’s block updates. Consequently, we are ignoring vertex dependencies that are limiting our
sampling efficiency. Furthermore, Sampson’s monk dataset is represented as a network with fewer actors
that our network, so we expect bigger networks will converge more slowly.

We plot the results of our latent variables Zi, as well as the network labeled with the mode of the group
assignments in Figure 5. The means µk for k ∈ {1, 2, 3} are also included in the latent variable embedding
plot on th left. Here, we see that the mode does not necessarily correspond to the closest distribution.
Nevertheless, we see the group assignments in the network on the right. Six of the characters in green are
from the Stark family, while the other two, Samwell and Meera, have close relationships with members of
the Stark family. The only Stark not colored green is Jon [Snow], who we later discover is actually not the
son of Eddard (Ned) Stark. It is interesting that our method kept him out of the Stark cluster, though that
may also be due to his geographical separation from the rest of the family.

−0.03 −0.02 −0.01 0.00 0.01 0.02 0.03

−
0.

04
−

0.
02

0.
00

0.
02

0.
04

Z.map[1,]

Z
.m

ap
[2

,]

Arya

Bran

Brienne

Catelyn

Cersei

Daenerys

Eddard
Gregor

Hodor

Jaime

Joffrey

Jojen

Jon

Lysa

Mance

Meera

Robb

RobertSamwell

Sandor

Sansa

Stannis

Tyrion
Tywin

Figure 5

6 Conclusion

It is clear from this work that latent network models are a useful tool for drawing inferences about a
network. In this project, we demonstrate their utility despite the fact that we simplify the model when using
EM and neglect block updates with MCMC. We suggest fully following the model development of Hoff for

12

optimal results. Though EM yielded sensible clusters, we are essentially just performing spectral clustering
on the observed Laplacian since the weighted EM model is highly parametrized and cannot estimate vertex
level latent variables. On the other hand, our MCMC model uses the dichotomized network where an edge
is simply any number of interactions, which clearly is a suppression of valuable information. We believe
that fitting a Poisson model for the weighted adjacency matrix using MCMC would yield optimal results.
Moreover, block updates are probably necessary as our current implementation suffers from ignoring the
latent group dependencies. These changes are obvious improvements that should be made.

Additionally, there is a lot of future work that can be accomplished in this area. A Storm of Swords is
an illustrative choice of books as it is the third and midpoint of all releases, so characters have developed
complex relationships. It would be interesting to perform the same analysis across each book and map a
character’s group status across time. Moreover, there are opportunities to consider the networks from each
book as a dynamic network, which is a popular area of research. We hope this project is a nice foundation
for future inference on Game of Thrones data.

7 References

References

Beveridge, Andrew and Jie Shan (2016). “Network of thrones”. In: Math Horizons 23.4, pp. 18–22.

Hoff, Peter D, Adrian E Raftery, and Mark S Handcock (2002). “Latent Space Approaches to Social Network
Analysis”. In: Journal of the American Statistical Association 97.460, pp. 1090–1098. doi: 10.1198/
016214502388618906.

Krivitsky, Pavel N. et al. (2009). “Representing degree distributions, clustering, and homophily in social
networks with latent cluster random effects models”. In: Social Networks 31.3, pp. 204 –213. issn: 0378-
8733.

Ng, Andrew Y., Michael I. Jordan, and Yair Weiss (2001). “On Spectral Clustering: Analysis and an Algo-
rithm”. In: Proceedings of the 14th International Conference on Neural Information Processing Systems:
Natural and Synthetic. NIPS’01. MIT Press, pp. 849–856.

13

Appendix

A Estimation Maximization Code

#--

#

EM.LNM.U

#

#--

#pij -> dij

logit <- function(p) log(p/(1 - p))

distance.u <- function(p) logit (1 - p/2)

#newton raphson

nr.u <- function(x, y, s, nE , tol = 10e-4){

#x is parameter to update

#y is other parameter in beta dist

#pi or eta

#nE is number of edges

repeat{

x.new <- x - ((digamma(x + y) - digamma(x) + sum(s)/nE) /(trigamma(x

+ y) - trigamma(x))) #nr update

if(abs((x.new - x)/x)<tol) break #convergence check

x <- x.new #update new parameter est

}

return(x.new)

}

#EM

LNM.EM.U <- function(A, tol = 10e-4, no.iters = 1000){

#An unweighted adj matrix

#create Y vector -------------------------------------

Y <- as.numeric(A[upper.tri(A)])

nE <- length(Y)

#Initialize parameter values -------------------------

alpha <- 1 #Prior beta values from uniform

beta <- 1 #Prior beta values from uniform

Q <- 0 #initialize Q

iter <- 1

#iterate until convergence

repeat{

#E Step

pi <- digamma(alpha + Y) - digamma(alpha + beta + 1) # log(p_ij)

eta <- digamma(beta + 1 - Y) - digamma(alpha + beta + 1) # log(1-p_ij)

#M Step

alpha <- nr.u(alpha , beta , pi , nE)

14

beta <- nr.u(beta , alpha , eta , nE)

#Check convergence

Q.new <- sum((Y + alpha - 1)*pi

+ (beta - Y)*eta

+ log(gamma(alpha + beta)) - log(gamma(alpha)) - log(

gamma(beta))

)

if(iter > no.iters || (abs((Q.new - Q) / Q) < tol)) break

Q <- Q.new

iter <- iter + 1

}

list(alpha = alpha , beta = beta , pi = pi , eta = eta , d = distance.u(exp(

pi)), no.iter = iter)

}

#--

#

EM.LNM.W

#

#--

#pij -> dij

distance.w <- function(l) 1/l

#newton raphson

nr.w <- function(alpha , beta , eta , nE , tol = 10e-4){

#lapha is parameter to update

#beta , eta is other parameters in Gamma

#nE is number of edges

repeat{

alpha.new <- alpha - (digamma(alpha) - sum(eta)/nE - log(beta))/(

trigamma(alpha)) #nr update

if(abs((alpha.new - alpha)/alpha)<tol) break #convergence check

alpha <- alpha.new #update new parameter est

}

return(alpha.new)

}

#EM

LNM.EM.W <- function(W, tol = 10e-4, no.iters = 1000){

#An unweighted adj matrix

#create Y vector -------------------------------------

Y <- as.numeric(W[upper.tri(W)])

nE <- length(Y)

#Initialize parameter values -------------------------

alpha <- 1 #Prior beta values from uniform

beta <- 1 #Prior beta values from uniform

Q <- 0 #initialize Q

15

iter <- 1

#iterate until convergence

repeat{

#E Step

pi <- (alpha + Y)/(beta + 1) # lambda_ij

eta <- log(1 +beta) + digamma(alpha + Y) # log(lambda_ij)

#M Step

beta <- (nE * alpha) / (sum(pi))

alpha <- nr.w(alpha , beta , eta , nE)

#Check convergence

Q.new <- sum((Y + alpha - 1)*eta

-(1 + beta)*pi

- log(factorial(Y))

+ alpha * log(beta) - log(gamma(alpha))

)

if(iter > no.iters || (abs((Q.new - Q) / Q) < tol)) break

Q <- Q.new

iter <- iter + 1

}

list(alpha = alpha , beta = beta , pi = pi , d = distance.w(pi), no.iter =

iter)

}

16

B Markov Chain Monte Carlo Code

LOGEPS <- log(. Machine$double.eps / 2)

lse <- function (x) {

m <- max(x); x <- x - m

m + log(sum(exp(x[x > LOGEPS])))

}

lse2 <- function (x, y) {

m <- pmax(x, y); d <- -abs(x - y)

ifelse(d < LOGEPS , m, m + log(1 + exp(d))) }

rlcat <- function (n, l) {

l <- Reduce(lse2 , l, accumulate = TRUE) # "cumlse"

l <- l - l[length(l)] # normalize

findInterval(log(runif(n)), l) + 1

}

LNM.MCMC <- function(G, Nk = 2, d = 2, ns = 10000) {

library(MASS)

library(invgamma)

Nv <- nrow(G)

Initialize

mu <- array(dim = c(Nk , d, ns)); mu[, , 1] <- 0

sigma <- matrix(nrow = Nk , ncol = ns); sigma[, 1] <- 1

lambda <- matrix(nrow = Nk , ncol = ns); lambda[, 1] <- -log(Nk)

K <- matrix(nrow = Nv, ncol = ns); K[, 1] <- sample.int(Nk, Nv, replace

= TRUE)

Z <- array(dim = c(Nv, d, ns)); Z[, , 1] <- 0

Updates

for (t in 2:ns) {

Mu

for (k in 1:Nk) {

Zg <- apply(matrix(Z[K[, t - 1] == k, , t - 1], ncol = d), 2, mean)

Zg <- ifelse(is.na(Zg), 0, Zg) # in case no one is in group k

ng <- sum(K[, t - 1] == k)

mu[k, , t] <- mvrnorm(n = 1

, mu = (ng * Zg) / (ng + sigma[k, t - 1])

, Sigma = ((sigma[k, t -1]) / (ng + sigma[k

, t -1])) * diag(d))

}

Sigma

for (k in 1:Nk) {

ng <- sum(K[, t - 1] == k)

SS_Zg <- sum(apply(matrix(Z[K[, t - 1] == k, , t - 1] - mu[k, , t],

ncol = d), 2, crossprod))

sigma[k, t] <- (1 + SS_Zg) * rinvchisq (1, 1 + ng*d)

}

17

Group K

for (i in 1:Nv) {

lambda_g <- sapply (1:Nk , FUN = function(k) {

C <- chol(sigma[k, t] * diag(d))

y <- backsolve(C, (Z[i, , t - 1] - mu[k, , t]), transpose = TRUE)

- (1/2) * log(2 * pi) - sum(log(diag(C))) - sum(y^2) / 2

})

lambda[, t] <- lambda_g - lse(lambda_g)

K[i, t] <- rlcat(1, lambda[, t])

}

Latent variable Z

Z[, , t] <- Z[, , t - 1]

for (i in 1:Nv) {

Zstar <- mvrnorm(1, mu = rep(0, d), Sigma = diag(d))

C <- chol(sigma[K[i, t - 1], t] * diag(d))

y <- backsolve(C, (Z[i, , t - 1] - mu[K[i, t], , t]), transpose =

TRUE)

y.star <- backsolve(C, (Zstar - mu[K[i, t], , t]), transpose = TRUE)

logR <- (-(1/2) * log(2 * pi) - sum(log(diag(C)))- sum(y^2) / 2) - #

p(Z*)

(-(1/2) * log(2 * pi) - sum(log(diag(C))) - sum(y^2) / 2) #

p(Z^(t-1))

if (logR >= 0 || log(runif (1)) < logR) Z[i, , t] <- Zstar

}

}

return(list(mu = mu, sigma = sigma , lambda = lambda , K = K, Z = Z))

}

18

