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Abstract

Forest fires continue to be a serious ecological issue that endanger human lives and ravage environmental
systems. At the time of this report, devastating wild fires are sweeping through Southern California and
have destroyed more than 5,700 structures with more than 3,000 acres of land still burning. While human
ability to fight forest fires has improved dramatically over recent decades, prevention is still the most
effective course to minimizing environmental damage. The Initial Spread Index (ISI) is a metric that
quantifies the speed at which a fire spreads. Firefighting agencies can use this metric to issue public
warnings and deploy resources to most effectively monitor and contain forest fires before they cause
substantial harm. This analysis uses linear modeling methodologies to infer key components that affect
ISI and by extension determine what causes rapid spread of forest fires. Through penalization schemes
and iterative model construction, we find that wind speed, temperature, and a summer indicator variable
all significantly explained ISI. With this result, firefighting groups can leverage existing weather prediction
systems to more effectively monitor and detect threats of deadly forest fires.

1 Introduction

Forest fires demolish entire ecosystems and have lasting consequences on the environment beyond their path
of destruction. These fires deplete oxygen from the atmosphere, impact the lumber industry, vanquish animal
habitats, and damage areas of natural beauty. They also contribute to pollution, carbon emission, soil
erosion, flooding, and water contamination. As our planet is increasingly threatened by rising temperatures
and dangerous policies, it is imperative that we be more responsible with our resources. Statistics offers many
tools that can reveal ways to be more mindful and efficient in addressing complex problems. Here, we will
use the theory of linear modeling to analyze the initial spread of forest fires. In particular, we look to pick
up where Smokey Bear left-off: the next line of defense after prevention is early-detection. By understanding
the factors of initial spread, we hope to contribute to the fight against forest fires.

To accomplish this goal, we examine Initial Spread Index (ISI) as our response variable from data obtained
in Monteshino Natural Park between 2000 and 2003. It is worth emphasizing that our target is not forest
fire occurrences. This subtle difference goes against our intuition. For example, regarding people, we expect
that the number of fires increases with the presence of people. On the other hand, more people means
earlier detection. Therefore, we have no a priori knowledge of the relationship between people and ISI. This
difficulty extends to other variables such as rain and wind, in which different arguments could be made to
explain different possible relationship with ISI.

This paper is organized as follows. In Section 2 we give a summary of our reference paper and restate
our goal in this context. In Section 3 we outline our analysis, including our initial exploration of the data, all
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feature engineering and variable selection, and our final modeling decisions. In Section 5, we apply our final
model to our holdout set in order to make unbiased inferences. We conclude our project in Section 6 with a
general discussion of our results and possible future directions. Finally, R code for inline plots and the final
modeling process may be found in Appendix I and Appendix II, respectively.

2 Background

In the reference paper provided1, Cortez and Morais explored the potential of machine learning algorithms for
predicting area burned by forest fires. They compared support vector machines (SVM), decision trees, multiple
linear regression, neural networks, random forests, and a näıve mean prediction with four sets of features.
The authors found that SVMs had the overall best success in predicting area burned using a combination
of temperature, rain, relative humidity and wind speed. Furthermore, their analysis details that in the Fire
Weather Index (FWI) system, ISI is a complex function of wind and Fire Fuel Moisture Code (FFMC). We
incorporate this discovery in our own analysis.

We use the same data curated by Cortez and Moraid, which includes meteorological data, as well as burned
areas of forest fires within Montesinho Natural Park in the northeast Trás-os-Montes region of Portugal. The
data were collected from January 2000 to December 2003 in separate datasets, which were manually integrated
by the authors into a single dataset with a total of 517 observations. It should be noted that Cortez and
Moraid do not claim this is a totally comprehensive dataset; some of the forest fires in the area may not have
been recorded. We keep this in mind with regard to possible sampling bias.

Our analysis takes a standard approach by first splitting the data into training and testing sets (70-30%
split), then performing feature engineering and variable selection on our training set, fitting our various
models, and finally evaluating these models on our testing set. We acknowledge that due to the relatively
small sample size of the dataset, there may be sparsity concerns in our training and testing sets. We address
these issues as they arise. While we do make predictions on the test set, our focus is on making statistically
significant inferential conclusions. Therefore, we avoid using overly complicated transformations, and when
faced with competing models, we select the simpler version. We understand that this may result in a sub-
optimal predictive model, but our goal is to obtain interpretable coefficients and generalizable results. We
chose this inferential approach because we believe the first step to combating forest fires is understanding
how they initially spread, and without an understanding, what good is a highly predictive model? Naturally
we want to understand the likely causes of forest fires with a high ISI, of which we explore variables related
to weather, time, location, and people.

3 Modeling & Analysis

3.1 Data Overview

The ISI attempts to quantify the risk associated with the initial spread of a forest fire. Heuristically, we expect
variables that describe the weather characteristics of Monteshino Natural Park, as well as the terrain within
the park, to affect the initial spread of a newly sparked forest fire. Although we do not know exactly how ISI
is calculated, we surmise that these characteristics should play a major role in our modeling procedure. While
we expect weather and topographic features to be two major explanatory classes, there is a third, far more
subtle factor that we need to address. Consider Figure 1. It appears that fires are far more likely to occur
in late summer and on the weekends. While the abundance of fires occurring in summer may be attributable
to weather patterns2, we suspect that the imbalance of fires on the weekend is connected in some way to the

1P. Cortez and A. Morais. A Data Mining Approach to Predict Forest Fires using Meteorological Data. In J. Neves, M. F.
Santos and J. Machado Eds., New Trends in Artificial Intelligence, Proceedings of the 13th EPIA 2007 - Portuguese Conference
on Artificial Intelligence, December, Guimares, Portugal, pp. 512-523, 2007.

2With a large spike in March, however, this behavior could be explained by both human behavior and weather trends.
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Figure 1: The data suggest more fires occur on the weekend and during the summer months.

presence of more visitors to the park. Although we do not have direct data on the number of individuals
in the park on any given day, we expect that this variable greatly affects the way in which the data were
collected. It seems reasonable to assume park visitors were either responsible for reporting the presence of a
fire or starting the fires themselves. Therefore, when more visitors are in the park, we expect more fires to
be detected, and more observations to be included in our dataset. So although we expect visitors to have no
affect on how fast fires spread, due to the nature in which the data were collected, we include variables that
model human presence.

With this in mind, we categorize our data into four types: weather, FWI indices, geo-spatial, and human
impact. Weather covariates include rain totals, temperature, and relative humidity, while indices such as
FFMC, Duff Moisture Code (DMC), and Drought Code (DC) attempt to measure characteristics of the
terrain. We attempt to capture the effect of geo-spatial components by using the (X,Y ) coordinates, as well
as designing new variables that identify homogeneous regions of the park. Lastly, we model the human impact
inherent in data collection by introducing variables that serve as proxies for the number of visitors to the
park on any given day. The construction of these variables will be covered in detail in Section 3.2.

In addition to these features, we also note that during our modeling procedure we found two abnormal
instances of the response, ISI, in our training set: one point had a value of zero and another had a value
56.1. Considering the boxplot in Figure 2, we see that these two points, especially the outlier for ISI = 56.1,

0 20 40

ISI

Figure 2: The boxplot of ISI suggests that there are significant outliers in our data.

were quite abnormal. Upon further analysis, we were unable to identify any specific reason that these values
deviated so far from the mean of the distribution. For this reason, we do not remove them from the training
set. Instead, we performed sensitivity analysis during each step of the modeling process by repeating our
analysis with and without these points, and concluded that the analysis was similar in both cases. Henceforth,
we present only our results with these outliers included.
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3.2 Feature Design

Based on our intuition of ISI, as well as an initial look at the data, we transformed and created several
covariates to obtain more informative predictors. We first found that area burned (area) is highly concentrated
around zero3 and extremely right skewed. Following the analysis of Cortez and Morais, we transformed area
using areaTrans = ln(area + 1). The rain fall (rain) covariate is also concentrated around zero and right
skewed, but we note that only 1.7% of the training set was non-zero. Therefore, we created an indicator of
whether or not there was rain on the day of the given fire (rainvnorain).

In order to better support our intuition about the impact of weather on ISI, we also created a wetness
metric, wetness, that measures the moisture in the air. We expect that this variable is important, because if
there is more moisture in the air, then fires should not be able to spread as easily. Furthermore, if there is more
moisture in the air, then plants and trees are also more moist, which means that fires lack the dry fuel they
need in order to spread. To calculate this metric, we obtained initial values of wetness using the LennTech
calculator4 by identifying wetness values for corresponding temperature (temp) and relative humidity (RH)
values. We then approximate this function in order to obtain metric values for each observation in our dataset.

We also created new indicators for the human impact feature class based on our initial analysis as explained
in Section 3.1. We created the indicators summer and weekend, because we observed that more fires occurred
during these time periods. In particular, summer = 1 corresponds to the months of June, July, August, and
September. These months were chosen based on the climate of Portugal and the number of fires that occurred
in this time frame. As for weekend, we chose the standard weekend days, Friday, Saturday, and Sunday, to
receive a 1.

Another interesting feature class in this problem is geo-spatial. The raw data contains X and Y coordinates
corresponding to a grid that has been overlaid on the map of Monteshino Natural Park. Each coordinate
ranges from 1 to 9, therefore there are 81 total boxes in the grid. Of course, the first attempts at capturing any
geo-spatial signal involved looking at the raw X and Y coordinates, as well as their interaction. Unfortunately,
many of these boxes were sparse and the 81 degrees of freedom necessary for the raw grid were detrimental
to the modeling process. Instead, we designed several features based on these values. This resulted in three
candidate features. First, we created new coordinates X2 and Y 2 that were created from the following
algorithm

1. Set X2 = X and Y 2 = Y.

2. Sum the first row, last row, first column, and last column of the X2− Y 2 matrix separately.

3. Combine the row or column with the lowest sum with its neighboring row or column.

4. Repeat steps 2 and 3 until every entry contains at least 1% of the data.

The algorithm was written under the belief that neighboring spaces should be topographically similar and
therefore should be the first candidates when grouping spaces together. Applying this algorithm, we reduced
the number of boxes from 81 to 12. We note that Y 2 only has two levels, which is unsurprising since
Monteshino Natural Park is wider than it is tall. The other two engineered features integrated outside
information. For these, we found a topographical map of Monteshino Natural Park on Google Maps and
overlaid the original X − Y grid. The result may be found in Appendix II. From this, we created forest ind,
which is a binary variable that takes the value 1 when the box is mostly covered in trees and 0 otherwise,
and grid group, which identifies five major mountain ranges and groups the boxes that cluster around these
mountain ranges. Both of these variables are intuitively appealing, since forest fires burn more rapidly when
trees are nearby and generally hikers tend to favor certain mountain ranges, which may have an effect on how
fires are started.

Lastly, we used a Box-Cox Transformation to identify the appropriate power transformation for our re-
sponse variable. The result was λ = 1

2 , corresponding to a square-root transformation, yielding our new
response variable sqISI. Since ISI is an index, it is unitless. Therefore, we feel comfortable transforming it
without loss of interpretation.

3Any fire with burn area lower than 100m2 was considered zero.
4https://www.lenntech.com/calculators/humidity/relative-humidity.htm
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3.3 Variable Selection

In order to effectively consider all variables discussed above (along with several interaction terms), while
still making inferential statements about sqISI, we use penalization schemes in order to identify important
variables and classes of variables in our problem.5 While Ridge Regression has several nice properties, we
utilize LASSO for its ability to perform variable selection. By using LASSO, we allow an L1 penalty to
zero-out non-informative variables while also identifying variables that are representative of entire classes of
covariates, e.g weather, spatial, etc.

After considering penalization coefficients under optimal smoothing parameters, as well as the added
variable plots in successive iterations of the modeling procedure, we found that a model including the variables
summer, temp, and FFMC were all key components in the mean function of sqISI. We note that the three
engineered geo-spatial features from Section 3.2 were all considered as covariates, but unfortunately none
were selected, as either LASSO zeroed-out their coefficients or they were deemed not significant under further
scrutiny. Since we still expect that terrain should play a role in describing sqISI, we attempted to include
this information in more complex ways in Section 4.1. On the other hand, representatives of weather, human
impact, and FWI indices were all included. Lastly we note that all interaction terms were also zeroed-out by
LASSO.

With these covariates, we fit a linear regression model to the data and find that this model performed
very poorly. The residuals appears highly non-normal with non-constant variance. In addition, it appeared
that any covariate except FFMC played little role in the model. Investigating the bivariate plot of sqISI and
FFMC, found in Figure 3, we see that FFMC and sqISI are almost perfectly related, but in a non-linear
fashion. Seeing the tight association between these two variables, it follows that any model selection procedure
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Figure 3: While FFMC and sqISI are closely related, this relationships is nonlinear.

will rightfully include FFMC as a predictor. But due to the non-linearity inherent in this plot, any model
including FFMC fails to satisfy the linear modeling assumptions. Now, if our goal is prediction, then we
would simply fit a higher order polynomial of FFMC, which would successfully explain the majority of the
variance in sqISI. This approach, however, would only reveal the relationship between sqISI and FFMC. Also,
we know from Cortez and Morais that FFMC is a function of the other covariates found in this model (e.g.
wind, temp, etc.). Therefore, we would only be able to infer the dependence between these other covariates
and sqISI through FFMC. In this way, FFMC effectively masks the explanatory value of the other covariates.
To illustrate this, consider the penalization paths with and without FFMC in Figure 4. Notice how when
we exclude FFMC, the other variables’ relative importance grows, while their penalization paths maintain a

5While we considered forward and backwards model selection procedures, information-theoretic approaches typically require
normally-distributed residuals, which we found to be an unreasonable assumption based on our initial fits.
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Figure 4: Removing FFMC from our modeling procedure suggests that FFMC and the weather covariates
explain similar variability in sqISI.

similar shape. Therefore, we see that FFMC and this set of covariates do, in fact, model similar variability
in sqISI. This was not immediately obvious by looking at correlation values and other collinearity statistics
due to the non-linear relationship between FFMC and sqISI, but by investigating their penalization paths,
we see that FFMC is skewing our analysis.

Since we chose an inferential approach to this problem, we wish to see the direct relationship between
sqISI, and hence ISI, and the other covariates considered above. Therefore, we wish to simplify the FFMC
variable and use the information from this variable in a way that does not mask the effects of wind, summer,
rainvnorain, and temp. While we tried several different transformations of FFMC to make this pairwise
relationship linear, we could find no interpretable function that resolved this issue. Instead, we note that this
complex non-linear relationship is roughly piecewise linear around the point FFMC = 80. Therefore, we
introduce an indicator variable (tFFMC) for FFMC ≤ 80 into our modeling procedure.

After introducing tFFMC into the modeling procedure, our final penalized coefficient estimates after
iterative variable selection are given in Table 1. Using these coefficient values, along with further investigation
of added variable plots and initial model fits, we found that the variables wind, summer, temp, tFFMC, and
rainvnorain explain additional variance of sqISI. A pairwise scatter plot can also be found in Figure 5. For this
reason, we focus our modeling on these weather covariates along with the newly introduced variable tFFMC.
Seeing tFFMC is the only non-weather covariate included, we attempt to use the information inherent in
this variable in multiple ways which we discuss in the next section.

4 Modeling

4.1 Candidate Models

We consider models with rainvnorain, temp, summer, and wind as covariates. Therefore, our primary mean
function is given by

√
ISI = β0 + β1 ∗ Summer + β2 ∗ Temperature+ β3 ∗Rain+ β4 ∗Wind+ e (1)

Upon fitting a regression model with this mean function, we found that the residuals appeared quite random,
but were still not normally distributed. In an attempt to remedy this issue, we turned to weighted least squares
models and mixed effects models with tFFMC and several geo-spatial variables constructed in Section 3.2 as
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Variable |β| Variable |β|
tFFMC 1.51 X2:7 0.07
rainvnorain 0.66 temp 0.04
summer 0.63 wkd 0.02
Intercept 0.28 X2:2 0.01
X2:5 0.26 areaTrans 0.01
forest ind 0.14 DMC 0.00
X2:3 0.12 wetness 0.00
X2:4 0.09 DC 0.00
wind 0.07 X2:6 0.00
Y2:5 0.07 RH 0.00

Table 1: LASSO coefficients ranked by rel-
ative importance
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Figure 5: Bivariate plots of sqISI and relevant covari-
ates used in modeling

ways to account for the non-normal nature of the residuals. We fit a random intercepts model to each level in
grid group and to each coordinate group in (X2, Y2). In both cases, we found no change in the distributions of
the residuals. Moreover, we attempted weighting by the number of fires in each grid group and each (X2, Y2)
block. Again, we saw no improvement in the behavior of the residuals. We concluded that without further
refinement or more granular data collection, all of the geo-spatial signal was being captured by the class of
weather features, and therefore X, Y , and all derivative variables were excluded from our final model.

Next, we consider tFFMC both as a weighting variable and as a covariate. By weighting points with
FFMC ≤ 80 differently, we inherently assume that these points have a different variance structure than the
remaining data. Referring to Figure 3, we see that while this may be the case, any definitive conclusions about
the variance structure are unjustified, with such few observations with FFMC ≤ 80. However, assuming that
this portion of the data is indeed different in some way than those with FFMC > 80, we fit a model with mean
function given in (1) plus tFFMC, as well as a weighted least squares model with the weights corresponding
to the number of observations for tFFMC = 0 and tFFMC = 1. Again, we see that the residuals maintain
a similar random pattern, while the Q-Q plots change marginally, which is evident from Figure 6. Here, we
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Figure 6: The addition of FFMC only marginally improves the linearity of residuals.

scaled these plots to exclude the point where ISI = 56.1 (though it was used to train the models), as it skewed
the graphics and hindered us from analyzing the normality assumptions of the standardized residuals. We
note that there is still odd behavior in the Q-Q plots at the tails of these distributions with the standardized
residuals falling under and over the line y = x at the theoretical quantiles greater than ±1. For this reason, we
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cannot justifiably use any model comparison techniques such as ANOVA. Instead, we note that the addition
of tFFMC adds very little improvement to the normality of our errors when included as a covariate and as
weights. Moreover, as we stated above, assuming that the points with FFMC ≤ 80 have very different
structure than those with FFMC > 80 may be unreasonable based on this sample size. Therefore, for the
sake of simple inferential statements, we do not include tFFMC in our final model.6 The diagnostic plots of
the final model described by (1) can be found in Figure 7. We note that the standardized residuals appear
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Figure 7: The final model appears to meet most modeling assumptions except that the residuals are normally
distributed. The added variable plots suggest that each variable explains additional variance in sqISI.

to be random noise around zero, with a few large outliers towards the center of the data. These points
correspond to the outliers in ISI but do not greatly affect the residual structure seen here. There appears to
be a cluster of good leverage points as seen in the Residuals vs Leverage plot and we note that the Q-Q plot
suggests that the residuals are not normal. Moreover, we see that the added variable plots suggest that each
variable explains additional variance in the response sqISI. Before we test for significance of these variables,
we note that by having non-normal errors we cannot use classical theory suggesting that our estimates follow
a t-distribution. Instead, we turn to a nonparametric technique to construct empirical confidence intervals
(CI) for testing significance in our final model.

4.2 Bootstrapping

Seeing that the residuals are non-normal in our final model, we instead use a nonparametric hypothesis testing
framework to test the hypothesis H0 : βi = 0 against HA : βi 6= 0. We implement the bootstrap procedure
to construct sampling distributions of each βi and find the corresponding empirical CI. The results of this
analysis are shown in Figure 8 and Table 2. We see that all sampling distributions are relatively normal and
none of their confidence intervals contain 0. This means that we can reject the null hypotheses and conclude
that summer,wind, temp, and rain are all significant in explaining sqISI.

6As we stated in Section 2, FFMC relies on the weather covariates found in (1). Therefore, while we exclude tFFMC here,
we implicitly include its effect via the remaining weather covariates.
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Figure 8: Empirical sampling distributions of βi

Variable 95% Empirical CI

Wind (0.06, 0.13)
Temperature (0.03, 0.06)

Summer (0.21, 0.61)
Rain (0.11, 1.14)

Table 2: Empirical CIs

5 Prediction

Finally, we turn our attention to evaluating the weather-only based model given by (1) on the holdout set.
We begin by fitting the chosen model on the testing data, which comprises 30% of the original dataset. The
results of this model are given in Figure 9. In the Actual vs Predicted plot, we see that our inferential model
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Figure 9: Testing results - predicted vs actual sqISI and model diagnostic plots.

captures the overall trend of sqISI. Considering the predicted sqISI values, the Mean Squared Error (MSE)
was calculated to be 13.4. In comparison, the MSE for the training set was 17.1. However, as previously
noted, there are significant outliers in the the training set, which explains the higher MSE.

Turning to the diagnostic plots in Figure 9, the model given here matches the behavior of the model fit
on the training data. That is, our residuals appear random yet non-normal. This can be seen in the Q −Q
plot, which exhibits significant left tail behavior. Therefore, CIs for our coefficient estimates were constructed
from a bootstrap sample. We then use these to make conclusions about the significance of the covariates.
The results of this analysis are summarized in Table 3 and Table 4.

All the CIs except for the binary Is Raining variable in Table 4 do not contain zero, so we conclude
that they are all different than zero. As the Is Raining CI does contain zero, we do not conclude that the
Is Raining variable is significantly different than zero. We also note that the CI is quite wide and there is
a large standard error, because there were only two data points with rain in the test set. While rain was
uncommon in the training set, it was less sparse than in the testing set, so it is difficult to make inferences
on such a variable.

The analysis on the testing set mostly confirms the model selection performed on the training set, with

9



Variable Estimate Standard Error
Intercept 1.31 0.24
Is Summer 0.58 0.16
Wind 0.079 0.029
Temperature 0.045 0.012
Is Raining -0.26 0.47

Table 3: Coefficient estimates on testing set

Variable 95% CI
Intercept (0.86, 1.76)
Is Summer (0.27, 0.91)
Wind (0.02, 0.13)
Temperature (0.02, 0.07)
Is Raining (−1.30, 0.59)

Table 4: Test set empirical CIs

the key difference being the loss of significance for the Is Raining variable. We conclude that all weather
variables except for rain impact sqISI, and fail to conclude that the presence of rain is a predictor for the
model. Based on an MSE criterion, the predictions from the model are reasonably close to the actual data.

6 Discussion

After a thorough modeling process, we selected the variables Wind, Temperature, Summer, and Rain based on
a LASSO-driven approach to variable selection. Higher wind speeds, higher temperatures, and summertime
conditions all correspond to higher ISI while the presence of rain did not play a role in predicting ISI. Wind
was found to be the most important predictor of ISI, so when considering fire conditions, predicting wind speed
and allocating resources based on this quantity should be prioritized. In addition, warm temperatures are
an important consideration when predicting fires. Summertime was also predictive of ISI, which we suggest
captures other underlying weather features such as long stretches of dry weather that are not otherwise
captured in the data. These findings match our intuition that dry, windy conditions are conducive to rapid
fire spread.

As noted throughout this report, there is a latent observation bias throughout our dataset: each of the
observations represents a single fire. As a result, our observations are imbalanced across spatial coordinates,
months of year, and even days of the week despite the fact that ISI is defined, though not recorded, even
when no fire occurs. Therefore, to conduct a complete analysis, one must collect data relating the covariates
considered here and ISI uniformly over the course of time with disregard to the presence of a fire. This will
remove any implicit effect that fires have on ISI as well as the human effect discussed throughout the duration
of this report. By collecting temporal and spatial data, the effect of weather and topographical attributes
may be tested directly.

Throughout our report, we focus primarily on an inferential approach. That is, we only consider simple,
interpretable models that provide insight to the ISI and, by extension, determine what causes initial rapid
spread of fires. In this way, we sacrifice predictive accuracy, because as previously noted, FFMC is highly
non-linearly predictive, and thus if we simply wanted to predict ISI, we could build a complex function of
FFMC to predict ISI, at the cost of interpretability of the model. We choose to keep the interpretable model,
because the loss of predictive power is minimal and we prefer to investigate the direct cause of weather
impacts on the initial spread of fire. Moreover, this approach empowers firefighting organizations to focus on
real-time, easily accessible data when allocating resources to stop fires at their source.

Based on these results, we suggest further investigation into the impact of summer conditions on ISI and
the impact of the Portuguese Mediterranean climate. In particular, focus could be on the specific climatic
differences during the summertime and the impact on fire susceptibility in ways that are not captured by
other indicies such as DC or DMC. Similarly, Portuguese forestry officials could measure changes in the forest
through the year, including the amount of dry grass on the forest floor and other flammable vegetation to
gather additional data to predict the initial spread of fires.
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