
MA 750 - Final Project

Nate Josephs Matthew Wiens Ben Draves

December 3, 2017

Abstract

One of the most fundamental tasks in Statistics is to understand the relationship
between two random variables, X,Y , via an unspecified function Y = f(X). Typically,
f(·) is unknown and must be estimated from data relating X and Y . Estimating f(·)
using maximum likelihood yields no meaningful solution when we consider all functions.
Hence statisticians turn to estimating f ∈ F where F is a function space with some
structure that provides closed form solutions. In most cases however, these function
spaces are fixed, with no regard to the sample from which we are trying to infer f .
In order to utilize all information inherent in the data while still imposing structure
on F , Sieve Estimation allows F to grow in complexity as n increases. Heuristically,
as n increases, we attain a more robust understanding of f and should allow our
modeling procedure to consider more complex forms of f . Sieve Estimation achieves
this by introducing more complex functions to F as n increases. Here, we consider the
function space

Fn =
{
g(x) : g(x) =

D∑
d=0

αdφd(x)
}

for basis function φd and where D →∞ as n→∞. We focus our efforts on estimating
D as a function of the data. We show that the optimal choice of D is asymptotically
equivalent to the estimate chosen via cross-validation. We also show the importance of
correct choice of D in an intensive simulation study and conclude with applying sieve
estimation to a real dataset.

1 Introduction

In multivariate statistical analysis, statisticians often try to relate two unknown quantities
X,Y by an unspecified function f(·). In maximum likelihood settings, this problem has no
closed form solution when we maximize over a general function space. Instead, we search
over reduced function spaces with known structure and therefore impose that functional
structure on our estimate f̂ . A lot of the statistical literature focuses on properties of these
estimates when the function space is given. For example, the theory of linear models focuses

1

on estimates of the form

F =
{
g(x) : g(x) = β0 +

p∑
i=1

βixi

}
where E[Y |X] is linear in the parameters of the model. While this class of estimators provides
several nice properties, the function space is generally quite restrictive as it does not allow
for any complex nonlinear interactions. In nonparametric settings, statisticians enlarge the
function space F by allowing the function to be locally adaptive. An example of a function
space of this form is given by the Nadaraya-Watson regression estimators

F =
{
g(x) : g(x) =

∑n
i=1Kh(Xi − x)yi∑n
i=1Kh(Xi − x)

}
which is parameter free and instead relies on the sample data. It is clear that changing F
greatly affects the estimates f̂ and that the complexity of F can vary dramatically. Statisti-
cians typically make a priori choices of F and only consider estimates of that form through-
out their analysis of (X, Y). However, as one collects more data of the form (xi, yi), our
understanding of f(·) should improve. That is, we should allow our estimates to become
increasingly complex as our sample grows. Sieve Estimation enables this behavior by con-
structing a sequence of function spaces {Fn}∞n=1 such that F1 ⊂ F2 ⊂ F3 ⊂ Then,
depending on the sample size n, the estimation procedure is performed over the optimal
space Fopt.

This report is organized as follows: In Section 2 we summarize some of the foundational
results on Sieve Estimation and introduce notation used throughout the report. In Section 3
we introduce the theoretically optimal estimate of D and a provide a data-dependent solution
to this problem. In Section 4 we provide a simulation experiment and apply this estimator
in Section 5 with a real data application.

2 Development of Sieves Estimation

2.1 Series Estimators

Sieve estimators are a general class of estimators that are applicable to a number of nonpara-
metric problems such as density estimation and regression. Within this framework, several
models from the econometric literature have been developed, addressing tasks such as logis-
tic regression, imputation techniques, and measurement error. While sieve estimation is a
general framework, we will focus on sieves for nonparametric regression.

A sieve estimator for the unknown mean function g(x) in a regression model is defined
by a sequence of functions approximating g(x). With the additional constraints that the
models should have finite dimension and the complexity (dimension) should increase as n
increases, the most natural choice for the estimator is given by the series estimator

ĝ(x) =
D∑

d=0

αdφd(x)

2

This formulation leads to traditional problems in linear models, so given the dimension of
the model and a choice of basis function, finding the coefficients α has well known solutions.
The constraints in the formulation are light. For instance, the choice of basis function must
approximate functions in L2. Though we will focus exclusively on linear sieves, examples of
non-linear sieves include Neural Networks and penalized sieve estimators [1].

Given the series estimator, there are two choices to be made: the dimension of the model
and the choice of basis function. D must be data dependent to scale the complexity of the
estimator with the data. Therefore, for now we will assume there is an algorithm to choose
D which produces a Dopt, for some sense of optimality. There are a number of choices for the
basis functions and we will highlight just a few of the possibilities. We will discuss finding
Dopt in the Section 3.

2.2 Basis Functions

One popular choice of functional estimator is given by the series estimator with polynomial
basis functions. Within the polynomial class, choices of coefficients uniquely determine
the exact form for the estimate. For example, the coefficient vector c = [0, 0 . . . , 1] would
correspond to a basis of {xk : k = 0, 1, 2, . . .}. The Hermite Polynomials would correspond
to another choice of c, which have desirable theoretical properties such as othronormality.
While a powerful class of estimators, polynomial basis functions are not a natural choice
when g(x) goes to zero at ±∞. Using a Fourier Series resolves this issue, which again
highlights the importance of an appropriate choice of basis function in a series estimator.
With several applications in signal processing, the Fourier basis is proven to be a natural
choice to approximate periodic functions. Lastly, the Gaussian basis set, given by {ϕ(d) : d =
0, 1, 2, . . . } where ϕ(d) is dth derivative of the Normal density, has several similar properties
of the Fourier basis. Moreover, we see that these functions have a natural probabilistic
interpretation (as do the Hermite Polynomials) which could be quite useful in inferential
settings. The functional forms of these basis sets are given in Table 1.

Basis Functions Functional Form

Polynomaials
∑d

i=0 cdx
d

Fourier a cos(πdx) + b sin(πdx)
Gaussian ϕ(d)(x)

Table 1: Proposed series estimators with basis function φ for ĝ(x)

Other common choices for the basis function are Splines and Wavelets. Different splines
can be used as the sieve estimator, however the exact form and behavior depends on the
choice of spline and the number of free parameters it has. This result can be shown by
considering a constrained optimization problem over the squares of the Dth derivatives of
the class of potential sieve estimators. Also note that the choice of basis in the univariate case
extends naturally to the multidimensional case, where the multivariate basis is constructed
as a tensor produce of the univariate basis [1].

3

Under the setup of a series estimator with a choice of dimension and basis function,
the sieve estimator has a number of similarities to the Kernel Density estimation problem.
In both cases there are two choices to be made: one parameter that controls the bias-
variance tradeoff and a second parameter that is related to underlying beliefs about the
model. The bandwidth in the Kernel estimation problem is analogous to the choice of
dimension. Intuitively, as the dimension increases or the bandwidth decreases the estimator
is more sensitive to local behavior and produces a rougher estimate. Similarly, the choice
of the Kernel is analogous to the choice of basis function. This choice impacts the final
model and exact statistical properties of the estimator, yet is less interesting because any
reasonable choice of basis function or kernel function produces a similar estimate.

2.3 Analysis of Series Estimators

To begin our formal analysis of the series estimator suppose we have some function f(x)
that can be well approximated by a series estimator. That is, we can write

yi ≡ f(xi) + e(xi) =
∞∑
d=0

φd(xi)αd + e(xi)

where {φd}Dd=0 is a set of orthogonal basis functions and αd are coefficients. Then the sieves
estimator for this function is given by

f̂(xi) =
D∑

d=0

φ(xi)αd = φT (xi)α

where φT (xi) = (φ0(xi), φ1(xi), . . . , φD(x))T and α = (α0, α1, . . . , αD). Now organizing our
matrices as follows

Y =

Y1
Y2
...
Yn

 , PD =

φ0(x1) φ1(x1) . . . φD(x1)
φ0(x2) φ1(x2) . . . φD(x2)

...
...

. . .
...

φ0(xn) φ1(xn) . . . φD(xn)

 , α =

α0

α1
...
αD

 , e =

e(x1)
e(x2)

...
e(xn)

we can write our model as

Y = PDα + e

Recognizing this as a linear function in PD gives rise to our OLS estimator of α

α̂ = (P T
DPD)−1P T

DY

From here we see that our estimates are given by

f̂(xi) = φT (xi)α̂

4

Due to the arsenal of statistical techniques for the linear regression model, we can extend
this estimation procedure to account for correlated errors, weighted error structure, or even
random effects. Notice that in the linear model framework these estimates would result in
unbiased best estimates of the coefficients α given that we specify D correctly. In the case
where we do not specify the mean function correctly, our estimate become unbiased and
the variance also increases. This again highlights the importance of correctly choosing the
dimension of the series estimator, which we discuss in the proceeding section.

3 Estimating the Dimension D

3.1 Mean Integrated Squared Error

In this framework, we introduce two types of error. The first is given by the error of the
approximation. This is how well the series estimator matches the true underlying function.
We will define this error by

r(x) = φT (x)α− f(x)

(Notice that these are the true coefficient values). The other source of error is of course the
random variation around the true regression function. We will call this the residual error,
ε(xi). Then we see that from the original model yi = f(xi) + ei(xi) that we can decompose
the error as

ei(xi) = ε(xi) + r(xi)

As we vary D we greatly reduce the variance in r(xi) as the more complex model will always
account for more variance. But we need to be careful to ensure that the model is only
reducing r(xi) and not ε(xi). In order to find an analytical choice of D, we will find the
Mean Integrated Squared Error (MISE). First, consider the following expansion.

f̂(x)− f(x) = φT (x)α̂− f(x)

= φT (x)α̂− φT (x)α + φT (x)α− f(x)

= φT (x)α̂− φT (x)α + r(x)

= φ(x)φT (x) (α̂− α) + r(x)

Assuming that the underlying X distribution is g, we have

MISE(D) =

∫
(f̂(x)− f(x))2g(x)dx

=

∫ (
φT (x) (α̂− α) + r(x)

)2
g(x)dx

=

∫
r(x)2g(x)dx+ 2(α̂− α)

∫
φT (x)r(x)g(x)dx+ (α̂− α)T

∫
φ(x)φT (x)g(x)dx(α̂− α)

= E[r2(x)] + 2(α̂− α)E[φT (x)r(x)] + (α̂− α)TE[φ(x)φT (x)](α̂− α)

Now recall that r(x) was a projection error during our OLS estimate of α. Therefore, r(x)
and φT (xi) exists in orthogonal spaces. Hence E[φT (x)r(x)] = 0. Moreover, since φ is a

5

collection of orthogonal functions, the off-diagonal elements of E(φ(x)φ(x)T) are all zero.
This gives

MISE(D) = E[r2(x)] + tr
[
(α̂− α)TE[φ(x)φ(x)T](α̂− α)

]
= E[r2(x)] + tr

[
E[φ(x)φ(x)T]E

(
(α̂− α)(α̂− α)T

)]
If E[e(x)2|x] = σ2

x, Q = E[φ(x)φT (x)] and Ω = E[φ(x)φT (x)σ2
x], then [2] showed that

MISE(D) ' E[r2(x)] +
1

n
tr
(
Q−1Ω

)
due to the asymptotic behavior of MISE(D). Now, if we assume homoscedasticity, we see
that Ω = σ2Q. So plugging into the equation above we get

MISE∗(D) ' E[r2(x)] +
1

n
tr
(
σ2Q−1Q

)
= E[r2] +

σ2

n
dim(Q) = E[r2(x)] +

σ2D

n

[2] also demonstrated that

MISE∗(D) = MISE(D)(1 + o(1))

so MISE∗ is close to MISE. But notice, even in this simple case we still require estimation
of r(x), which is directly related to the estimation of the true regression mean function
f(x), which is what we started to estimate in the first place. Therefore, while an excellent
theoretical tool, using MISE∗ in practice is infeasible. We will, however, use this theoretical
exercise to inform our data dependent choices of D which we give in the following sections.

3.2 Prediction Squared Error

As we have seen, MISE does not offer a feasible solution for the selection of D. Instead of
MISE, one may be interested in calculating the Predicted Square Error (PSE) in order to
find the optimal dimension with respect to PSE. If x∗ is a new value from X ∼ f(x), then
our prediction of Y given X = x∗ under the sieve estimator is ŷ∗ = f̂(x∗). We then define
PSE as the expectation of the squared error between Y ∗, the actual value of the regression
line at X = x∗, and ŷ∗. Observe that

6

PSE
(
f̂(x∗)

)
= E

[
(Y ∗ − ŷ∗)2

]
= E

[(
f(x∗) + e∗ − f̂(x∗)

)2]
= E

[(
e∗ + (f(x∗)− f̂(x∗)

)2]
= E

[
e∗2
]

+ 2E
[
e∗
(
f(x∗)− f̂(x∗)

)]
+ E

[(
f(x∗)− f̂(x∗)

)2]
= E

[
(e∗ − E[e∗])2

]
+ 2E

[
e∗
]
E
[(
f(x∗)− f̂(x∗)

)]
+ E

[(
f(x∗)− f̂(x∗)

)2]
= V ar(e∗) + 0 +

∫
E[(f(x)− f̂(x))2]g(x)dx

= V ar(e∗) +MISE
(
f̂(x)

)
Hence, the optimal dimension for our sieve estimator with respect to PSE will be the

same as the optimal dimension with respect to MISE, since minimizing PSE is equivalent to
minimizing MISE. Note that in our derivation, we use the fact that the errors are zero mean
and e∗ is independent of the estimator.

3.3 Choosing D via Cross-Validation

If we define ẽ = Y ∗ − ŷ∗, then PSE
(
f̂(x∗)

)
= E

[
ẽ2
]
, which we may interpret as the

expectation of a single leave-one-out squared prediction error, where our estimator is fit
on X1, . . . , Xn and validated against X = x∗. This motivates us to consider leave-one-out
prediction errors for each i = 1, . . . , n, which will reveal a data-driven process for choosing
an optimal dimension D.

For each i, define ẽi = yi − ˆy(i) where ˆy(i) is fit on X1, . . . , Xi−1, Xi+1, . . . , Xn. Then

PSE
(

ˆf(i)(x)
)

= E
[
ẽi

2
]

and we define the cross-validation (CV) criterion as

CV (f̂) =
1

n

n∑
i=1

ẽi

.

By the linearity of expectation, we have that E
[
CV (f̂)

]
= PSE

(
f̂(x∗)

)
, which we will

utilize as our data-driven procedure for choosing Dopt. [2] demonstrated this estimate of D
has the nice property that it is asymptotically equivalent to the D chosen from MISE.

7

4 Simulation Study

We simulated N = 150 data points from the model

Y = sin3(2πX3) + ε where X ∼ N(0, 1) and ε ∼ N(0, .2)

with the goal of fitting a polynomial series estimator to the data. From n = 10 to 150 in
increments of 10, we fit such models with degrees of complexity varying from 1 to 8. We
repeated this on 200 separate datasets and plotted the PSE against n. The results of the
simulation are summarized in Figure 1. As expected, the PSE decreases as n increases.

0.0

0.1

0.2

0.3

40 80 120

n

PSE

Dimension

d=1

d=2

d=3

d=4

d=5

d=6

d=7

d=8

Figure 1: The effect of the n on PSE. From the graph we clearly see the optimal functional
form relies on the sample size, n.

Furthermore, the optimal degree increases with n. A linear model is best only for n = 10.
At n = 20, a quadratic fit minimizes the PSE. However, by n = 30 a fifth degree polynomial
is best and remains so until n = 50. Ultimately, a sixth degree polynomial performs very
well and is not supplanted by a seventh degree polynomial until n = 90. We note that an
eighth degree polynomial never minimizes the PSE.

5 Real Data Application

5.1 Geyser Data Example

Consider a canonical regression problem: the waiting period of the Old Faithful geyser
and a function of the previous eruption duration. Here, we demonstrate that the sieve
estimator gives similar results as other nonparametric regression estimates, but with many
fewer degrees of freedom. The faithful dataset has 272 data points, which is small, but
sufficient to demonstrate the sieve estimator. As in the simulation above, a polynomial basis
is used.

8

First, consider a subset of the geyser data with only 40 data points. Here, as expected,
sieve estimators with a low dimension perform the best. However, note that polynomials of
low degree still perform better than simply a linear model.

50

60

70

80

90

2 3 4 5

eruptions

wa
itin

g

Dimension

d1

d3

d8

Estimated Regression − Partial Dataset

50

60

70

80

90

2 3 4 5

eruptions

wa
itin

g

Dimension

d1

d4

d12

Estimated Regression − Full Dataset

25

30

35

40

45

50

100 200

n

PS
E

Dimension

d1

d3

d4

d5

d8

d12

Geyser PSE by n (Polynomial)

Figure 2: Sieves Analysis of Geyser dataset. We see that increasing our sample size leads to
differing optimal models

With the full 272 data points, the optimal dimension is 4, which has increased from the
case with only 40 data points. Note that the optimal dimension increases much more slowly
than N. Again, if D grows too quickly, like D = 11, then the data is overfit and the variance
is large.

5.2 Econometric Example

Sa and Portugal [4] apply sieve estimators to model a loss function of inflation and output
gap for the Brazilian Central Bank and the Federal Reserve for their determination of interest
rates. The sieve estimator is chosen because the sieve estimator allows for global computation
of the derivatives of the estimator. Therefore, a polynomial basis is a natural choice for the
easy interpretation of derivatives in the model. Specifically, a Chebyshev Polynomial basis

9

is used because the loss function is defined on [−1, 1]. A set of 14 variables is chosen to
be the basis and a sieve estimator is fit. If any of the coefficients of degree 3 or higher
are significantly different than zero, then the authors would conclude the third derivative is
nonzero and therefore the loss function is asymmetric.

In the sieve estimator, the cross-term between inflation and the output gap is near zero,
so the problem is separable into the inflation and output gap components. Based on the
sieve estimator the Federal Reserve was more concerned about inflation than the output gap,
which confirmed other studies. Furthermore, the sieve estimator does have nonzero third
derivative with respect to inflation, so it is concluded that the Federal Reserve was more
concerned about high inflation than deflation from 1960-2011. However, by considering only
the years from 1982-2011, then the authors determined that there was not enough data to
significantly conclude the presence of asymmetry in the loss function.

This example uses sieve estimators in a multivariate inferential context, which is a natural
extension of the single dimensional estimator discussed in Sections 2 and 3. However, the
advantage of the sieve estimator are apparent by specifying a general, closed-form, global
functional form which results in intuitive determination of parameters of interest in the
economic model.

6 Conclusion

In this report, we develop the methodology of a general sieve estimator, discuss the properties
of a polynomial series sieve estimator, and explore data driven applications. Sieve estimators
are general estimators and are able to model many different classes of mean functions. Like
other nonparametric estimators, two key choices are the choice of basis function, which is
determined by properties of the problem, and the choice of dimension, which controls the
complexity of the estimator. We propose selecting the dimension through a cross-validation
scheme. Solving the polynomial series sieve estimator, after choosing the dimension and
basis, is equivalent to solving ordinary least squares. With this property, we derive the
MISE and justify the use of predicted squared error as a criterion to select the dimension.

Additionally, we evaluate the empirical use of the sieve estimator through simulation and
observed data sets. The simulation illustrates how the optimal dimension of the estimator
increases as the amount of data increases. Moreover, the dimension grows much more slowly
than N, which results in the asymptotic properties of the MISE. In the Old Faithful example,
we show how a sieve estimator naturally incorporates additional data to better approximate
the mean function with much less model complexity than other nonparametric regression
estimators.

Further exploration could be done by considering a penalized sieve estimator as a way to
control model complexity. Little work has been done on testing with sieve estimators, and
the simple functional forms of the estimators may lead to useful results for global properties
of the mean function.

10

7 References

Code for the analysis and figures is available at https://github.com/matthewrw/Sieves_
Project/tree/master/R_code and may be used freely with proper acknowledgment.

[1] Xiaohong Chen. “Large Sample Sieve Estimation of Semi-Nonparametric Models”. In:
Handbook of Econometrics, Volume 6B. Elsevier B.V., 2007.

[2] Bruce Hansen. “Nonparametric Sieve Regression: Least Squares, Averaging Least Squares,
and Cross-Validation”. In: The Oxford Handbook of Applied Nonparametric and Semi-
parametric Econometrics and Statistics. Ed. by Jeffrey Racine, Liangjun Su, and Aman
Ullah. Oxford University Press, 2012.

[3] Andres Munk-Nielson. The Method of Sieves. 2016. url: http://www.econ.ku.dk/
munk-nielsen/notes/sieve_note.pdf.

[4] Rodrigo de Sa and Marcelo S. Portugal. “Central bank and asymmetric preferences:
An application of sieve estimators in the U.S. and Brazil”. In: Economic Modeling 51
(2015), pp. 72–83.

[5] Liangjun Su. Nonparametric Sieve Estimation. 2014. url: http://www.mysmu.edu/
faculty/ljsu/Econ713_files/Ch4.pdf.

11

A Simulation Code

library(ggplot2)

library(gridExtra)

N <- seq(10, 150, by = 10)

D <- seq(1:8)

error_plot_avg <- data.frame(n = integer(), pse = numeric(), d = character())

PSE

seeds <- seq(1:200)

for(seed in seeds){

sample data

set.seed(seed)

X_i <- runif(max(N), 0, 1)

e_i <- rnorm(max(N), 0, 0.2)

Y_i <- sin(2*pi*X_i^3)^3 + e_i

initialize df for plotting

error_plot <- data.frame(n = integer(), pse = numeric(), d = character())

compute CV for dimension-D model on N datapoints

for (d in D) {

d_plot <- data.frame(n = N, pse = rep(0, length(N)), d = paste0("d=", d))

for (n in N) {

m_hat = lm(Y_i[1:n] ~ poly(X_i[1:n], d))

pse = sum((residuals(m_hat) / (1 - hatvalues(m_hat)))^2) / n

d_plot[d_plot$n == n, "pse"] <- pse

}

error_plot <- rbind(error_plot, d_plot)

}

if(nrow(error_plot_avg) == 0){

error_plot_avg <- error_plot

}else{

error_plot_avg[, "pse"] <- error_plot_avg[, "pse"] + error_plot[, "pse"]

}}

error_plot_avg[, "pse"] <- error_plot_avg[, "pse"] / length(seeds)

plot

ggplot(data = error_plot, aes(x = n, y = pse, group = d)) +

geom_line(aes(colour = d)) +

coord_cartesian(ylim = c(0, 0.35)) +

labs(x = "n", y = "PSE", color = "Dimension")

frames = 15

12

for(i in 1:frames){

creating a name for each plot file with leading zeros

if (i < 10) {name = paste(’000’,i,’plot.png’,sep=’’)}

if (i < 100 && i >= 10) {name = paste(’00’,i,’plot.png’, sep=’’)}

if (i >= 100) {name = paste(’0’, i,’plot.png’, sep=’’)}

n <- 10*i

min_pse = min(error_plot_avg[error_plot_avg$n == n, "pse"])

min_d = error_plot_avg[error_plot_avg$n == n & error_plot_avg$pse == min_pse, "

d"]

min_d = as.integer(substr(min_d, 3, 3))

d_sizes <- rep(.5, length(D))

d_sizes[min_d] = 2

#saves the plot as a .png file in the working directory

png(name)

p <- ggplot(data = error_plot[error_plot$n <= n,]

, aes(x = n, y = pse, group = d)) +

geom_line(aes(colour = d, size = d)) +

scale_size_manual(values = d_sizes, guide = FALSE) +

coord_cartesian(ylim = c(0, 0.35), xlim = c(0, 150)) +

guides(colour = guide_legend(override.aes = list(size = d_sizes))) +

labs(x = "n", y = "PSE", color = "Dimension")

print(p)

dev.off()

}

Fitted Results

sample data

set.seed(750)

X_i <- runif(max(N), 0, 1)

e_i <- rnorm(max(N), 0, 0.2)

Y_i <- sin(2*pi*X_i^3)^3 + e_i

true_reg <- function(x){sin(2*pi*x^3)^3}

opt_D <- c(1, 2, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7)

for(i in 1:frames){

creating a name for each plot file with leading zeros

if (i < 10) {name = paste(’000’,i,’fit.png’,sep=’’)}

if (i < 100 && i >= 10) {name = paste(’00’,i,’fit.png’, sep=’’)}

13

n <- 10*i

min_pse = min(error_plot_avg[error_plot_avg$n == n, "pse"])

min_d = error_plot_avg[error_plot_avg$n == n & error_plot_avg$pse == min_pse, "

d"]

min_d = as.integer(substr(min_d, 3, 3))

d_sizes <- rep(.5, length(D))

d_sizes[min_d] = 2

#saves the plot as a .png file in the working directory

png(name)

p <- ggplot(data = error_plot[error_plot$n <= n,]

, aes(x = n, y = pse, group = d)) +

geom_line(aes(colour = d, size = d)) +

scale_size_manual(values = d_sizes, guide = FALSE) +

coord_cartesian(ylim = c(0, 0.35), xlim = c(0, 150)) +

guides(colour = guide_legend(override.aes = list(size = d_sizes))) +

labs(x = "n", y = "PSE", color = "Dimension")

fitted values

df <- data.frame(x = X_i[1:N[i]], y = Y_i[1:N[i]])

m_hat <- lm(y ~ poly(x, opt_D[i]), data = df)

ix <- sort(x, index.return = TRUE)$ix

m_hat <- approxfun(x[ix], predict(m_hat)[ix])

grid <- seq(0, 1, by = .01)

pred_df <- data.frame(x = grid, pred_y = m_hat(grid))

f <- ggplot(data = df, aes(x = x, y = y)) +

geom_point() +

geom_line(data = pred_df, aes(y = pred_y, x = x)) +

coord_cartesian(ylim = c(-1.2, 1.2), xlim = c(0, 1))

grid.arrange(p, f)

dev.off()

}

ezgif.com for making gif

B Geyser Data Code

Y_i <- faithful$waiting

X_i <- faithful$eruptions

N <- seq(32,272, by=10)

14

initialize df for plotting

D <- seq(1,12)

error_plot <- data.frame(n = integer(), pse = numeric(), d = character())

predicted_df <- data.frame(d = character(), eruptions = numeric(), waiting =

numeric())

compute CV for dimension-D model on N datapoints

p <- ggplot(data =faithful[1:max(N),] , aes(x = eruptions, y = waiting)) +

geom_point() + labs(title = "Estimated Regression - Full Dataset", color = "

Dimension")

for (d in D) {

d_plot <- data.frame(n = N, pse = rep(0, length(N)), d = paste0("d", d))

for (n in N) {

m_hat <- lm(Y_i[1:n] ~ poly(X_i[1:n], d))

pse = sum((residuals(m_hat) / (1 - hatvalues(m_hat)))^2) / n

d_plot[d_plot$n == n, "pse"] <- pse

}

error_plot <- rbind(error_plot, d_plot)

#col <- c("blue","blue",’red’,’red’,’orange’,’orange’,’orange’,’green’,’green

’,’green’,’green’,’green’)

m_hat_predict <- approxfun(X_i[1:n],m_hat$fitted.values)

predicted_df <- rbind(predicted_df,data.frame(d = paste0("d", d),eruptions =

seq(min(X_i),max(X_i),length.out=1000), waiting = m_hat_predict(seq(min(

X_i),max(X_i),length.out=1000))))

}

p + geom_line(data = predicted_df[predicted_df$d %in% c("d1","d4","d12"),] , aes

(y = waiting, x = eruptions, group = d, colour = d)) + labs(title = "Estimated

Regression - Full Dataset", color = "Dimension")

plot

ggplot(data = error_plot[error_plot$d %in% c("d1","d3","d4","d5","d8","d12"),],

aes(x = n, y = pse, group = d)) +

geom_line(aes(colour = d)) +

coord_cartesian(ylim = c(25, 50)) +

labs(title = "Geyser PSE by n (Polynomial)", x = "n", y = "PSE", color = "

Dimension")

Now compute estimator for small number of data points

n <- 40

D <- seq(1,11)

error_plot <- data.frame(n = integer(), pse = numeric(), d = character())

15

compute CV for dimension-D model on N datapoints

predicted_df <- data.frame(d = character(), eruptions = numeric(), waiting =

numeric())

p <- ggplot(data =faithful[1:n,] , aes(x = eruptions, y = waiting)) + geom_point

() + labs(title = "Estimated Regression - Partial Dataset", color = "Dimension

")

for (d in D) {

m_hat <- lm(Y_i[1:n] ~ poly(X_i[1:n], d))

pse = sum((residuals(m_hat) / (1 - hatvalues(m_hat)))^2) / n

d_plot[d_plot$n == n, "pse"] <- pse

m_hat_predict <- approxfun(X_i[1:n],m_hat$fitted.values)

predicted_df <- rbind(predicted_df,data.frame(d = paste0("d", d),eruptions =

seq(min(X_i),max(X_i),length.out=1000), waiting = m_hat_predict(seq(min(

X_i),max(X_i),length.out=1000))))

}

p + geom_line(data = predicted_df[predicted_df$d %in% c("d1","d3","d8"),] , aes(

y = waiting, x = eruptions, group = d, colour = d))

16

